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Cross-platform development for microcontrollers: design of a virtual machine based 

portable programming language 

 
The fundamental role of microcontrollers in embedded systems and the Internet of Things (IoT) 

environments necessitates efficient software development approaches. Resource limitations of 

microcontrollers, the complexity of low-level programming languages, and the challenges of 

implementing multitasking slow down the development process considerably. Additionally, the diversity 
of the microcontroller landscape creates substantial barriers to code portability, leading to increased 

development time to support different hardware platforms. This paper presents the design of a virtual 

machine-based programming approach to enable cross-platform development for microcontrollers. The 

proposed portable programming language integrates with a custom virtual machine, Mico8-Chip, to 
suit modern microcontroller applications. This allows intuitive control over peripherals and built-in 

support for concurrent execution. The provided abstraction layer significantly improves code portability 

and accelerates development by isolating application logic from underlying hardware specifics. The 
primary purpose of this work is to address the fragmented microcontroller ecosystem and the challenges 

of low-level programming by introducing a unified and portable development solution. 

 

Keywords: microcontroller, embedded systems, virtual machine, programming, bytecode, 
concurrency, Internet of Things. 

 

Introduction. The increasing need for smart and independent devices within the Internet of Things 
(IoT) ecosystem has caused a rise in the popularity of microcontroller-based systems. Microcontrollers 

are now widely used in many types of applications, including automation systems, wearable 

technologies, home appliances, medical devices, industrial equipment, and robotics. Their key 
advantages, such as low power use and small size, make them very important for many applications, 

including various IoT-based technologies [1]. However, using traditional programming methods for 

microcontrollers has some limits. While the C programming language and similar low-level languages 

are still commonly used in microcontroller systems and IoT networks, they require careful attention 
from programmers about important things like memory management, software security, and 

multitasking [2]. Although other high-level programming languages like MicroPython offer an easy-to-

use way to develop software, they often have problems with program execution speed and how they use 
available memory, so they are not suitable for use in microcontroller environments where resources are 

limited [3]. 

A significant challenge in the domain of microcontroller programming comes from the characteristic 

limitations in hardware resources. These limitations typically evident as restricted Random Access 
Memory (RAM), small flash memory capacity, and reduced processing power compared to general-

purpose computing systems. As a result, developers are required to write highly optimized code to 

guarantee efficient resource utilization. Furthermore, implementing complex functionalities like 
multitasking becomes considerably challenging due to the scarcity of available resources. When an 

embedded system demands concurrent execution of multiple tasks, such as processing data from sensors, 
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managing communication protocols, and handling user interface interactions through a control panel, 

the complexity of software development increases substantially. The necessity of ensuring precise 
memory management and the efficient scheduling of these concurrent tasks inevitably leads to delays 

in software development cycle. 

In this paper, a new approach is proposed that integrates a portable programming language 

specifically designed for the microcontroller environment with a virtual machine to overcome the 
previously mentioned difficulties. The primary purpose of this work is to develop a comprehensive 

solution for cross-platform microcontroller programming that balances ease of development with 

resource efficiency. To achieve this, this research focuses on creating a portable, high-level 
programming language with a C-like syntax for microcontroller applications to enhance developer 

productivity and code readability. A compiler is also developed to translate this language into compact 

bytecode executable by the Mico8-Chip virtual machine. Additionally, the approach integrates built-in 

concurrency support within the language and virtual machine to simplify multitasking in embedded 
systems without external dependencies, demonstrating improved code portability across microcontroller 

architectures through the virtual machine abstraction layer. The target virtual machine, Mico8-Chip, is 

a redesigned version of the CHIP-8 architecture, modified to meet the requirements of modern 
microcontroller systems [4]. CHIP-8 is an interpreted programming language and virtual machine 

developed in the 1970s for use on microcomputers. CHIP-8 which was designed for the development of 

interactive programs and games [5]; however, it is still being used in educational environments [6]. The 
proposed programming language is designed to provide control of microcontroller peripherals, handling 

of input/output operations, and concurrent program execution. One of the important features of this 

approach is its built-in multitasking environment, which allows multiple applications to run 

simultaneously without the need for complex scheduling mechanisms. 
The syntax of the proposed programming language is intentionally designed as a simplified 

derivative of C syntax. The motivation for this similarity is based on C's extensive application in 

microcontroller systems, thereby minimizing the necessity for programmers to get proficient in an 
entirely new syntax. Tasks developed in this programming language are converted into special bytecode 

and executed by the virtual machine. The proposed approach both provides easier control of the 

hardware in microcontroller systems and increases the portability of the code. Since the same bytecode 
can be used on different microcontroller platforms without changes, the efficiency and speed of software 

development increase significantly. 

The problem statements. Despite the widespread adoption of microcontrollers in various 

applications, the current landscape of embedded systems development faces significant issues that 
decrease its efficiency. One major challenge lies in the inherent fragmentation of the microcontroller 

ecosystem. There are different microcontroller architectures and vendors, each often requiring 

specialized toolchains, programming languages, and development environments. This diversity makes 
it difficult for developers to port their software across different hardware platforms, leading to 

significant increase of effort and development costs when projects need to scale or adapt to new 

hardware. Valuable engineering resources are frequently spent on platform-specific optimizations and 

re-writes rather than on developing core application logic and new features. 
Furthermore, the widespread use of low-level languages like C, while offering fine-grained control 

over hardware, introduces a steep learning curve and requires careful attention to low-level details. This 

can be particularly challenging for developers entering the embedded systems domain or those working 
on projects with tight deadlines. The complexity associated with manual memory management, 

complicated peripheral configurations, and the need to handle hardware-specific nuances can lead to 

increased development time and a higher likelihood of introducing subtle and hard-to-debug errors. This 
situation is further compounded by the growing sophistication of embedded applications, which often 

demand more complex functionalities and interactions, pushing the limits of what can be efficiently 

managed with traditional low-level programming paradigms within resource-constrained environments. 

While higher-level languages offer a potential solution for simplifying development, their inherent 
overhead in terms of execution speed and memory footprint often renders them unsuitable for the 
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resource-constrained nature of many microcontroller platforms. This creates a trade-off between ease of 

development and performance efficiency. Developers are frequently forced to choose between the faster 
development cycles offered by higher-level languages and the necessary performance and resource 

optimization achievable with lower-level languages, often leading to compromises that may not fully 

satisfy the requirements of the target application. This restricts the accessibility of advanced 

programming concepts and tools within the embedded systems domain, potentially preventing the 
development of more sophisticated and feature-rich applications on microcontrollers. 

The increasing demand for embedded systems to perform multiple tasks concurrently also presents 

a significant challenge in the context of limited resources. Implementing robust and efficient 
multitasking capabilities on microcontrollers using traditional methods often requires complex real-time 

operating systems (RTOS) or custom scheduling mechanisms. This adds another layer of complexity to 

the development process, demanding specialized knowledge and potentially consuming significant 

amounts of the already scarce memory and processing power. The need for effective concurrency 
management becomes even more critical in IoT applications, where devices must interact with their 

environment and communicate with other systems in a timely and reliable manner. 

In essence, the current landscape of microcontroller development is characterized by a tension 
between the need for efficient resource utilization, the growing complexity of applications, and the 

aspiration for faster development cycles and increased code portability. These limitations collectively 

delay innovation, increase development costs, and complicate the creation of sophisticated and 
adaptable embedded systems. This paper aims to address these fundamental challenges by proposing a 

unique approach centered around a virtual machine-based portable language specifically designed to 

bridge the gap between development ease and resource efficiency in the microcontroller domain. This 

process involves developing a high-level programming language with a C-like syntax and an 
accompanying compiler that compiles this source code to bytecode for the targeted virtual machine, 

Mico8-Chip. This approach abstracts hardware complexities and simplifies application logic 

development while allowing to integrate native concurrency without relying on external scheduling 
mechanisms. Furthermore, it improves code portability and accelerates development cycles compared 

to traditional methods. 

Related work. Overcoming the characteristic limitations of resource-constrained embedded systems 

to enable the use of higher-level programming languages has been a persistent focus of research, 

frequently involving the development of dedicated virtual machines. BIT and PICBIT were two of the 

early approaches in this domain that sought to bring the benefits of the Scheme programming language 

to microcontrollers. The development of BIT detailed a highly compact implementation of the Scheme 

programming language, focusing on achieving space efficiency and real-time garbage collection through 

a compact byte-code compiler and runtime system [7]. This work demonstrated the feasibility of running 

meaningful Scheme programs on microcontrollers with limited memory, with the limitations of 

relatively lower execution speed and the omission of error-checking. Further investigation into Scheme 

for resource-constrained devices was conducted with PICBIT, a specific adaptation of a Scheme system 

for the PIC microcontroller family. PICBIT utilized a 24-bit object representation and incorporated a 

byte-code interpreter and optimizing compiler [8]. The PICOBIT system was later modeled after these 

early virtual machine approaches, which included an optimizing C compiler named SIXPIC [9]. 

Addressing the challenge of executing Java applications on resource-constrained microcontrollers, 

the Darjeeling Virtual Machine was designed to provide a memory-efficient solution for environments 

such as wireless sensor networks. The primary objective was to design and implement a virtual machine 

that supports a subset of Java functionality suitable for microcontrollers. Darjeeling introduced a system 

comprising a runtime and offline tools that implement a modified Java Virtual Machine (JVM) designed 

for minimal memory usage. Key innovations of this approach include the selective omission of certain 

JVM features, a compact static linking model using infusions, and a unique memory model. The system 

also uses a basic mark-and-sweep garbage collector and supports preemptive multithreading. 
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Performance evaluations on AVR128 and MSP430 microcontrollers demonstrated effective operation 

with limited memory resources and execution speeds up to 70,000 JVM instructions per second [10]. 

Efforts to overcome the constraints of microcontroller environments have also led to the development 

of alternative JVM designs. The TakaTuka JVM specifically designed for microcontrollers with limited 

RAM, storage, and processing power. The TakaTuka JVM introduces techniques such as offline garbage 

collection, which allows deallocation of reachable but unused objects, and a variable slot size scheme 

for efficient memory management. The system also implements extensive Java binary optimizations, 

including bytecode compaction and constant pool optimizations, and utilizes a direct threading 

mechanism for bytecode interpretation. The main limitation of this approach is the potential restriction 

in dynamic adaptability due to the reliance on offline analyses for memory management [11]. 

Methods for improving microcontroller programming were also explored through unique virtual 

machine approaches, such as the OCaLustre system, which was developed as a synchronous extension 

to the OCaml programming language. The system works along with OCaPIC, a virtual machine 

designed to run OCaml bytecode on PIC microcontrollers. The primary aim was to enable safer, more 

expressive, and concurrent software for microcontrollers by integrating a higher-level programming 

model with efficient memory use. The OCaLustre system introduces nodes for deterministic concurrent 

tasks and features a compilation model that translates these nodes into sequential OCaml functions. 

Benchmarking analyses demonstrated OCaLustre’s advantages in both static and dynamic resource 

efficiency compared to other concurrency models [12]. Later work introduced a generic virtual machine 

approach for programming microcontrollers with the OMicroB project. Building on earlier findings with 

OCaPIC, this research focused on enhancing the safety and portability of microcontroller programming 

by utilizing the OCaml language and the OMicroB VM, which is implemented in C. This approach 

involves compiling OCaml to bytecode, optimizing it with the "ocamlclean" tool, and then converting 

it into C code using a custom tool called "bc2c". Key findings demonstrated that the OMicroB VM could 

effectively execute OCaml programs on resource-constrained microcontrollers, such as the 

ATmega328P used in Arduino Uno boards [13]. 

Recognizing the potential of WebAssembly beyond web environments, its application was explored 

as an alternative programming platform for microcontrollers. The core objective was to enhance the 

efficiency, safety, and ease of programming for microcontrollers. WARDuino, a virtual machine built 

upon WebAssembly and improved with features such as live code updates, remote debugging, and 

modular runtime configuration was created and examined. The architecture of WARDuino integrates 

WebAssembly and Arduino functionalities, exposing hardware capabilities through specific modules. 

Benchmarks demonstrated that WARDuino achieved significantly faster execution compared to 

Espruino, a JavaScript interpreter for microcontrollers, while maintaining smaller binary sizes [14]. 

Researchers have also explored the feasibility and performance of implementing minimal virtual 

machines on microcontroller-based IoT devices. The research focused on evaluating two virtual machine 

architectures: a stack-based VM using WebAssembly and a register-based VM built upon extended 

Berkeley Packet Filters, called rBPF. Their goal was to identify solutions for process isolation and 

software modularity with minimal resource overhead. Evaluations demonstrated that the rBPF 

interpreter had a significantly smaller flash memory footprint compared to WebAssembly. However, 

rBPF exhibited longer execution times. The study highlighted rBPF's advantages in memory efficiency 

and its potential for process isolation on microcontrollers without requiring hardware memory protection 

units [15]. 

The complexity and safety issues in microcontroller programming was addressed by proposing 

SenseVM, a virtual machine that implements a higher-order concurrency model. The principal objective 

of the research was to streamline the programming of reactive and concurrent embedded systems by 

introducing a high-level message-passing interface based on functional programming. SenseVM 

introduces a concurrency model where synchronous operations are encapsulated as first-class values 
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called "events", which can be composed using various combinators. The virtual machine, SenseVM, is 

an interpreter built upon the Categorical Abstract Machine (CAM) architecture and includes a low-level 

bridge that interfaces with Zephyr OS for hardware-agnostic interaction. Evaluations demonstrated code 

portability across different microcontroller platforms, with power consumption comparable to optimized 

C implementations, although response times revealed a performance overhead [16].  

Summing up the above works, the field of microcontroller programming has seen a significant push 

towards adopting higher-level languages and virtual machine technologies to address the limitations and 

complexities associated with traditional low-level approaches. Various studies have explored the 

implementation of languages like Scheme, Java, OCaml, and WebAssembly through custom-made 

virtual machines, each addressing the unique challenges of memory efficiency, performance, and 

concurrency on microcontrollers. These efforts have introduced innovative techniques in memory 

management, garbage collection, code optimization, and concurrency models. Different architectures 

have been investigated, often coupled with specialized compilers and optimization tools. While each 

approach presents its own strengths and limitations in terms of performance, memory usage, and 

portability, the overarching goal is to simplify microcontroller programming, enhance developer 

productivity, and enable the development of more sophisticated and safer applications for embedded 

systems. The main contributions of this paper are summarized as follows: 

• A minimalist virtual machine-based architecture designed to enable cross-platform development 

for embedded systems. 

• The design and implementation of a portable language specifically for microcontrollers, enabling 

code reuse across different hardware platforms. 

• An approach that aims to balance the performance of low-level programming with the abstraction 

of high-level languages in the context of embedded systems. 

Proposed programming language and compiler architecture. Microcontrollers typically have 

limited processing power and RAM resources compared to microprocessors. Therefore, it is not 

advisable for applications targeting microcontroller environments to carry out intensive calculations and 

allocate large chunks of memory. Understanding these limitations is important for selecting the right 

microcontroller for a specific application and designing systems that can operate effectively within these 

limitations. Microcontrollers are essential in devices that require low power consumption, especially for 

battery-powered wearable technologies. The proposed portable programming language was designed 

taking into account the limitations often encountered in microcontroller environments. The syntax and 

keywords of the language are similar to the C programming language, simplified to enable compilation 

into minimalistic virtual machine systems, such as Mico8-Chip, and to ensure low resource usage. 

Therefore, functionalities such as dynamic memory allocation and the definition of complex data models 

have not been integrated into the language. 

To run the developed programs in the microcontroller environment, it is first necessary to convert 

the human-readable source code into bytecode that can be executed by a Mico8-Chip virtual machine. 

For this, a compiler designed for the proposed programming language is used. The compiler's conversion 

of source code into bytecode is a multi-stage process, which determines whether the program code is 

syntactically and semantically correct before execution. The compilation process goes through the 

following stages: 

1. Reading source code. Human-readable source code is read from a file. This code is written in the 

syntax of the proposed language. 

2. Lexical analysis. Source code is broken down into tokens. In programming languages, tokens are 

the smallest meaningful units processed by compilers or interpreters. Examples of tokens include 

keywords, operators, identifiers, and numbers. 

3. Syntax analysis. Tokens are checked against the grammatical rules of the language. A syntax tree 

is constructed, representing the hierarchical structure of the code. This stage ensures that the code is 
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syntactically correct. 

4. Semantic analysis. The code is checked for semantic correctness. This includes checking types, 

determining whether variables and functions are declared before they are used, and ensuring that 

function calls are correct. 

5. Creation of intermediate representation code. After semantic analysis, the syntax tree is converted 

into intermediate representation code. Intermediate representation code is a form that can be more easily 

optimized and manipulated than source code. 

6. Optimization. Various optimization techniques are used to improve the execution performance. 

This stage may include eliminating code duplication, removing unreachable code, and optimizing loops. 

7. Bytecode generation. Bytecode is a low-level, platform-independent code that can be executed by 

the proposed virtual machine. Bytecode generation is performed based on the intermediate 

representation code. 

All errors and warnings encountered at various stages of the compilation process are logged by the 

compiler. Errors result in the compilation process failing to complete, while warnings reveal potential 

problems in the source code. This helps in identifying and fixing problematic parts of the code. This 

systematic approach ensures that the source code is validated and transformed into an efficient bytecode 

format that is suitable for execution in the virtual machine environment (Fig. 1). 

 

 
Fig. 1. Execution flow for the proposed portable programming language for microcontrollers 

 

Tokens and lexical structure. The initial phase of compilation transforms unstructured text source 

code into a sequence of meaningful symbols that can be processed by following compiler stages. These 

symbols are tokens, which act as blocks of source code and are categorized based on their role in the 

syntax of the proposed language. The process of breaking down source code into tokens is called 

tokenization or lexical analysis and is the initial step in the compilation or interpretation process where 

the source code is scanned and tokens are identified. 

The operational process of lexical analysis involves the compiler's lexer systematically reading the 
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source code, character by character. As it reads, it applies the defined lexical structure rules for grouping 

characters into lexemes and assign them the appropriate token types. For instance, upon encountering 

the sequence 'i', 'f', the lexer recognizes it as the keyword "if" rather than two separate identifier tokens. 

This recognition is based on the defined keywords list and the longest match principle. Whitespace and 

comments encountered during this scan are recognized and filtered out. If a sequence of characters is 

encountered that does not fit to any valid token pattern, a lexical error is reported. The output of this 

phase is a list of tokens (Fig. 2). 

 

 
Fig. 2. Tokenization process of the source code 

 

The types of available tokens are keywords, identifiers, literals, operators, and comments. Identifiers 

are names given to tokens such as variables, functions, and labels. Identifiers must follow certain naming 

conventions, starting with a letter or underscore and consisting of letters, digits, or underscores. 

Keywords are words with special meanings, such as "if", "else", "while", and "for", which cannot be 

used as identifiers. Literals represent constant values that are directly represented in the code, like integer 

and string literals. Operators are tokens that express operations on operands, and include arithmetic, 

comparison, and logical operators. There are also tokens that provide structure to the language but have 

no independent meaning, such as commas, semicolons, parentheses, curly braces, and square brackets. 

Comments are single-line or multi-line annotations that allow developers to make notes within the 

source code, although they do not affect the execution of the program. 

The proposed language has a similar token structure to C, with the elimination of tokens that are not 

implemented due to different constraints of the targeted virtual machine, Mico8Chip (Fig. 3). While this 

limits the use of syntactic patterns, it is necessary for achieving the minimal memory and storage 

footprint for the virtual machine implementation and resulting executable. 
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Fig. 3. Categorization of available tokens of the proposed programming language 

 

Syntax analysis. The token stream produced by the lexical analysis phase serves as the input for the 

subsequent stage of compilation: syntax analysis. By converting the raw character data into a structured 

sequence of meaningful tokens, the lexical analyzer simplifies the task of the parser. The parser can then 

operate on these higher-level tokens rather than individual characters, allowing it to focus on verifying 

the grammatical structure and hierarchical relationships within the code according to the language's 

syntax rules. This separation is a fundamental principle in compiler design, contributing to modularity 

and simplifying the complexity of both the lexical and syntactic analysis phases. 

The primary objective of syntax analysis is to determine if the sequence of tokens produced by the 

lexer conforms to the formal grammatical rules defined for the proposed programming language. This 

process verifies the structural correctness of the code and simultaneously constructs a hierarchical 

representation that reflects the relationships between the tokens, providing a structured view of the 

program. The syntax of the portable language is formally defined by a context-free grammar, which 

specifies the valid sequences in which tokens can appear to form syntactically correct language 

constructs such as expressions, statements, and definitions. The parser, the component of the compiler 

responsible for this stage, reads the token stream and applies these grammar rules to group the tokens 

into phrases and verify their arrangement. This process involves recognizing patterns in the token 

sequence that correspond to the language's syntactic constructs, ensuring that the ordering and 

combination of tokens strictly follow the defined grammar. As the parser successfully recognizes these 

constructs, it builds a hierarchical representation of the source code in the form of an Abstract Syntax 

Tree (AST). The AST provides a concise and abstract representation that captures the essential structure 

and relationships of the code while omitting unnecessary grammatical details, offering a convenient 

structure for following compilation phases like semantic analysis and code generation. During parsing, 

if the parser encounters a sequence of tokens that does not follow the language's grammatical rules, a 

syntax error is detected and reported to the user, indicating the location of the structural mistake. Syntax 

analysis serves as an intermediary phase, transforming the linear token stream into a structured 

representation that is crucial for understanding the program's meaning and aiding the later stages of the 

compilation process. 

The AST of the proposed language is simpler compared to the C programming language because of 

the reduced number of tokens and simplicity of the design (Fig. 4). 
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Fig. 4. Abstract Syntax Tree of example program written in the proposed language 

Semantic analysis. Following the validation of the program's structural correctness during the syntax 

analysis phase, the compilation process proceeds to semantic analysis. This stage is responsible for 

checking the logical consistency of the source code, ensuring that it adheres to the proposed language's 

rules beyond just grammatical form. The input to the semantic analyzer is the AST produced by the 

parser. The primary goals are to detect semantic errors that are syntactically valid but logically 

inconsistent and to gather essential information required for following stages like intermediate code 

generation or optimization. 

Key checks performed during semantic analysis include static type checking, which verifies that 

operations are applied to operands of compatible data types according to the proposed language's type 

system. This prevents illogical operations, such as attempting to perform arithmetic on a non-numeric 

value or assigning a value of an incompatible type to a variable, unless explicit and valid type coercion 

or casting is specified. Another important purpose of this stage is scope and declaration checking, 

ensuring that all identifiers for variables and functions are declared within an accessible scope before 

they are used and that there are no conflicting declarations within the same scope. This process involves 

constructing and managing a symbol table, a data structure that stores information about each declared 

identifier, including its type and scope. Name resolution is performed by querying the symbol table to 

link each use of an identifier in the code to its corresponding declaration. Additional semantic checks 
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include verifying correct function call arguments and ensuring control flow statements like break or 

return are used in appropriate contexts. 

Semantic analysis performs static checks that can be done at compile time without executing the 

code. Unlike syntax errors, semantic errors often relate to the context in which language constructs are 

used. If semantic errors are detected such as using an undeclared variable or type mismatch, the compiler 

reports these issues to the user, providing details about the nature and location of the error. Successfully 

analyzed code is represented by an annotated AST, where nodes are decorated with semantic 

information such as resolved types and symbol table references. This enhanced representation serves as 

the validated and semantically meaningful input for the next stage of the compiler, building a connection 

between the purely structural view provided by the parser and the requirements for generating executable 

code for the Mico8-Chip virtual machine. 

Intermediate Representation generation. After the semantic analysis process, the compiler process 

proceeds to generate an Intermediate Representation (IR). The IR serves as a bridge between the 

language-specific front-end of the compiler, which includes lexical, syntax, and semantic analysis, and 

the target-specific back-end, which involves optimization and code generation. Its primary purpose is to 

transform the program from a high-level, language-dependent structure like the AST into a lower-level, 

more machine-like representation that is independent of the specific target architecture, in this case, the 

Mico8-Chip virtual machine. IR is still more abstract than raw machine code or bytecode. 

The adoption of an IR provides effective separation between the front-end and back-end. The front-

end translates the source language into the IR, and the back-end translates the IR into the target code. 

This modularity is important for compiler development and maintenance. For instance, adding support 

for a new source language only requires building a new front-end that targets the existing IR, and 

supporting a new target architecture requires only building a new back-end that uses the existing IR. 

The IR is the representation at which many compiler optimizations are performed. IRs are designed to 

provide opportunities for optimization more effectively than either the source-level AST or the final 

target code. These optimizations include dead code elimination and loop transformations. Performing 

optimizations on a single IR allows them to be language-independent and target-independent, reducing 

redundant implementation effort. IRs can take various forms, ranging from graphical structures, to tree-

based IRs simpler than the AST, to various forms of linear code. The compiler of the proposed portable 

language generates the IR by traversing the semantically analyzed AST and translating the high-level 

constructs into a sequence of simpler, sequential operations. This step systematically breaks down 

complex statements and expressions into a more elementary form that is closer to the operations the 

target virtual machine can execute (Fig. 5). 

The IR generated at this stage then becomes the input for the subsequent optimization phase, where 

various algorithms are applied to improve the code's efficiency. Following optimization, the IR serves 

as the basis from which the final Mico8-Chip bytecode is generated. Therefore, the IR acts as an 

intermediate format that standardizes the program representation for both optimization and target code 

generation, contributing to the compiler's modularity, efficiency, and portability. 

Bytecode generation. Bytecode generation is the final stage in the compiler pipeline, following the 

generation and optimization of the IR. This phase is responsible for translating the optimized IR into the 

specific instruction set that the target virtual machine, the Mico8-Chip, can directly interpret and 

execute. It represents the final transformation of the source code program into its portable, executable 

form. The input to this stage is the optimized IR code produced by the compiler's front-end, and the 

output is the sequence of bytes containing the Mico8-Chip bytecode. 

The core task of bytecode generation is to map the operations and control flow structures expressed 

in the optimized IR onto the opcodes defined by the Mico8-Chip virtual machine's instruction set 

architecture. This involves iterating through the IR and, for each operation or sequence of operations, 

selecting the appropriate Mico8-Chip opcodes that perform the equivalent function. This selection 
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process must consider the specifics of the Mico8-Chip's architecture, including its register set, memory 

model, and available operations. Control flow constructs within the IR, such as conditional branches, 

loops, and function calls are translated into the corresponding jump and branch instructions of the 

Mico8-Chip virtual machine, requiring careful management of addresses within the target bytecode 

space. Data access operations specified in the IR are mapped to the instructions for loading from and 

storing to memory. 

 

 
Fig. 5. Example conversion of "if", "while", "if-else", and "for" blocks to IR code 

 

This phase is the most target-dependent part of the compiler's back-end, as it is intimately tied to the 

specific instruction set of the Mico8-Chip virtual machine. While the preceding IR provides a degree of 

abstraction, effective bytecode generation requires a detailed understanding of the operations, operand 

types, and encoding formats. The output is a linear sequence of 16-bit opcodes, formatted precisely as 

expected by the Mico8-Chip interpreter. This bytecode contains the compiled program logic and data in 

a form that is ready to be loaded into the Mico8-Chip virtual machine running on a microcontroller. The 

portability of the compiled program across different microcontroller platforms is achieved because the 

Mico8-Chip virtual machine, which interprets this bytecode, is designed to abstract away the underlying 

hardware differences, executing the same bytecode regardless of the specific microcontroller it is 

running on. Thus, bytecode generation concludes the compilation process by producing the artifact that 

enables cross-platform execution via the virtual machine. 

Experimental results. The Mico8-Chip virtual machine is implemented in the C programming 

language for each specific microcontroller platform. However, benchmarking of the virtual machine's 

runtime performance is outside the scope of this paper, as the primary focus is on the design of the 

portable programming language and its compiler. Evaluating the virtual machine's execution efficiency 

depends heavily on its specific native implementation for each microcontroller architecture, a separate 

research effort from the language and compiler design presented. 

Evaluation of compilation speed on host development platforms revealed it does not create a practical 

bottleneck. A large source file exceeding 20,000 lines (~600 kilobytes) compiles in under one second 

on a standard workstation, resulting in a bytecode ~150 kilobytes in size. The Mico8-Chip virtual 

machine’s typical 8 kilobyte bytecode limit already renders such large source files unrealistic for the 
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target. Moreover, the compiler's implementation in Python suggests even faster speeds are achievable 

with a compiled language, supporting that host compilation time is not a limiting factor in the 

development workflow. 

A set of programs was developed using the proposed portable language and compiled into Mico8-

Chip bytecode for testing purposes. As demonstrated by the data presented in Table 1, the generated 

bytecode for these programs has comparable size to functionally equivalent code implemented manually 

at a low level, such as hand-crafted Mico8-Chip instruction sequences or highly optimized low-level 

code. This competitive code size is achieved while offering developers the advantage of working with 

a higher level of abstraction through the proposed language's syntax, which improves source code 

clarity, increases readability, and reduces the complexity associated programming for the target virtual 

machine. 

 

Table 1. Compiled size of example programs 

Example program written in the proposed language 
Bytecode 

size 

Blinking an LED with a simple delay mechanism 10 bytes 

Controlling an LED with a button click event 14 bytes 

Outdoor light activation when it is dark outside 16 bytes 

Servo motor control using two separate buttons 34 bytes 

Ultrasonic distance measurement for object detection 52 bytes 

Animated lights on an RGB LED array display 68 bytes 

Basic sound-sensitive alarm system for security purposes 82 bytes 

Periodic watering system designed for indoor plants 102 bytes 

6 button sound pad with system calls for audio playback 140 bytes 

Toggling a device on and off with hand clapping 176 bytes 

Temperature and humidity logger for environmental monitoring 192 bytes 

Automated feeding system for domestic pets 234 bytes 

Controlling IoT devices using system calls 310 bytes 

Conclusion and future work. The increasing complexity of microcontroller-based systems within 

the Internet of Things and other embedded applications highlights significant challenges associated with 

traditional development approaches. As discussed in this paper, the characteristic resource constraints 

of microcontrollers, coupled with the complexity of low-level programming and the fragmentation of 

the hardware landscape, decrease developer productivity and limit code portability. These factors 

require repetitive development efforts when targeting different platforms. This paper presented the 

design and implementation of a virtual machine-based portable programming language aimed at 

addressing these fundamental challenges. The core purpose of this paper was to create a cross-platform 

development solution for microcontrollers. The program codes written in this language compiles to 

bytecode for Mico8-Chip virtual machine, a re-engineered architecture based on CHIP-8, adapted to 

meet the demands of modern microcontroller systems. Mico8-Chip virtual machine includes a built-in 

concurrent task execution environment and to serves as the universal execution target for the proposed 

language. The language features C-like syntax, incorporating features necessary for embedded 

development. Through this work, the compiler pipeline of this language was detailed, which is 

responsible for compiling the source code into the final Mico8-Chip bytecode. This integrated approach 
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directly addresses the problem of code portability, as demonstrated by the ability to generate uniform 

bytecode for different microcontroller platforms, and lowers development complexity by offering a 

higher level of abstraction. 

In conclusion, this work contributes a programming language that address the issue of fragmentation 

and portability in the microcontroller ecosystem. By providing a consistent compilation target and 

execution environment, the system simplifies the development process, reduces porting effort, and 

makes embedded programming more accessible while remaining mindful of the limitations of the target 

hardware. The effectiveness of the designed compiler pipeline in generating compact code for resource-

constrained environments is demonstrated by the bytecode sizes of various example programs, as 

presented in Table 1. The small bytecode sizes for various functional programs confirm that the solution 

successfully balances high-level abstraction with the memory constraints of microcontrollers. This 

directly contributes to achieving the goal of accelerating development without significant performance 

or memory overhead, thus making embedded programming more accessible and portable across diverse 

hardware platforms. 

Several paths exist for future research and development. Expanding the feature set of the portable 

language to include more complex data structures or standard libraries would enhance its applicability. 

Further optimizations to the compiler's back-end and the Mico8-Chip interpreter could potentially 

reduce execution overhead and memory footprint. Porting the Mico8-Chip virtual machine to a wider 

array of microcontroller families would broaden the system's reach. Additionally, exploring advanced 

features like developing integrated debugging and profiling tools could further enhance the system's 

utility for embedded software engineers. This research provides a solid foundation for continued 

exploration into high-level, portable development paradigms for the ever-growing domain of 

microcontroller-based systems. 
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Крос-платформенна розробка для мікроконтролерів: проєктування переносимої 

мови програмування на основі віртуальної машини 

 

Фундаментальна роль мікроконтролерів у вбудовуваних системах та середовищах 

Інтернету речей потребує ефективних підходів до розробки програмного забезпечення. 

Обмеження ресурсів мікроконтролерів, складність мов програмування низького рівня та 
проблеми реалізації багатозадачності значно уповільнюють процес розробки. Крім того, 

різноманітність екосистеми мікроконтролерів створює суттєві бар'єри для портативності 

коду, що призводить до збільшення часу розробки для підтримки різних апаратних платформ. 
У цій статті представлено розробку підходу програмування на основі віртуальної машини, що 

забезпечує кроссплатформенну розробку для мікроконтролерів. Пропонована мова 

програмування, що переноситься, інтегрується з користувальницькою віртуальною машиною 

Mico8-Chip для відповідності сучасним додаткам мікроконтролерів. Це забезпечує інтуїтивне 
керування периферійними пристроями та вбудовану підтримку паралельного виконання. 

Наданий рівень абстракції значно покращує переносимість коду та прискорює розробку, 

ізолюючи логіку застосування від базових апаратних особливостей. 
Ключові слова: мікроконтроллер, вбудовані системи, віртуальна машина, програмування, 

байт-код, паралелізм, інтернет речей. 
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