SEARCH FOR TECHNICAL SOLUTIONS TO ENSURE THE TIGHTNESS HYDRAULIC DAMPER OF PASSENGER CAR

Authors

  • N. Braikovs’ka
  • V. Ischenko
  • Y. Scherbina

DOI:

https://doi.org/10.32703/2617-9040-2018-32-1-81-92

Keywords:

hydraulic damper, tightness, rubber seal, contact pressure, rod packin

Abstract

The article discusses issues related to the reasons for the loss of performance of a hydraulic damper of a passenger car of the НЦ-1100 type when a failure occurs in the sealing cups, and proposes ways to improve the tightness of the damping device. In the ―Universal Mechanism‖ [1, 9] program complex, using a built-in computer model of the dynamics of a passenger car on КВЗ-ЦНИИ bogies, vertical forces are transmitted to the oscillation damper rod under conditions close to operational ones. Using the software MSC.Marc / Mentat (MSC Software, USA), a study of the stress-strain state of a typical rubber cuff under external loads was conducted. The distribution of changes in contact pressure at the point of connection of the stem with the cuff is determined depending on the ratio of the pressure of the working fluid and the calculated total pressure due to the elastic properties of rubber and the action of the ring spring. Long-lasting work and reliability of the cuff are primarily determined by the selection of the contact pressure of the coupling pair with minimum values of frictional effects (friction, relaxation of stresses). At the pressure of the working body, the contact pressure depends on the physical and mechanical properties of the elastic part of the cuff, its initial deformation, the radial force of the spring, and the design performance. With insufficient contact pressure there is a risk of a loss of working fluid, and more than normalized pressure leads to an increase in the temperature in the contact area, and, accordingly, to reduce the elastic properties of the material cuff, which reduces the life of its work.

References

1. Pogorelov, D. (2005) Simulation of Rail Vehicle Dynamics with Universal Mechanism Software. Rail vehicle dynamics and associated problems. Gliwice: Silesian University of Technology, 13-58.
2. Ishchenko, V. Scherbina, Y. (2017) Pidvyshchennya efektivnosti roboty hidravlichnykh hasiteliv kolyvannya pasazhyrsʹkykh vahoniv na vizkakh typu KVZ-TSNYY Shlyakhom konstruktyvnykh zmin. [Improving the efficiency of the operation of hydraulic vibrations of passenger carriages on the carriages of the type КВЗ-ЦНИИ through constructive changes.] Herald of SNU V. Dalya – №4 (234), 106-110. (In Ukrainian).
3. Javanbakht, Z. Öchsner, A. (2017) Advanced Finite Element Simulation with MSC Marc: Application of User Subroutines. Springer. (In Switzerland).
4. Ambroziak, A. (2017) MSC.Marc/Mentat. Gdańsk, Politechniki Gdańskiej. (In Poland).
5. Report of Research Work (DETUT) № state registration №0116U008469, registered Ukrainian Institute of Scientific, Technical and Economic Information (UkrINTEI) by account number ОК №0217u003589 from 23.05.17 - 127 p. (In Ukrainian)
6. Ishchenko, V. Shataev, V. Shcherbyna, Yu. (2017) Pidkhodi z konstruktyvnoho udoskonalennya hidravlichnoho amortyzatora typu NTS-1100 vizkiv pasazhyrsʹkykh vahoniv [Approaches to constructive improvement of hydraulic shock absorber type НЦ-1100 carriages of passenger cars]. Wagon park №11-12 (128-129), 38-42. (In Ukrainian).
7. Vasilkov, D. (2011) Elektromekhanicheskiye privody metalloobrabatyvayushchikh stankov. Raschet i konstruirovaniye. Saint Petersburg, Politekhnika (In Russian)
8. Tran, P (2018) SOLIDWORKS 2018 Advanced Techniques, USA, SDC Publications.
9. Petrenko, V. (2016) Simulation of Railway Vehicle Dynamics in Universal Mechanism Software. Procedia Engineering, Vilnius Gediminas Technical University. 23-29. (In Lithuania).
10. Wacharawichanant S., Siripattanasak T. Mechanical and Morphological Properties of Polypropylene/Polyoxymethylene Blends (2013) Advances in Chemical Engineering and Science 3, 202-205. Retrieved from: URL: https://file.scirp.org/pdf/ACES_2013071111271821.pdf

Література:

1. Pogorelov D.Yu. Simulation of Rail Vehicle Dynamics with Universal Mechanism Software / D.Yu.
Pogorelov // Rail vehicle dynamics and associated problems. Gliwice: Silesian University of Technology,
2005. – P. 13-58.
2. Іщенко В.М., Щербина Ю.В. Підвищення ефективності роботи гідравлічних гасителів коливань
пасажирських вагонів на візках типу КВЗ-ЦНИИ шляхом конструктивних змін. // Вісник СНУ ім.
В.Даля – №4 (234) – 2017. – С.106-110.
3. Zia Javanbakht, Andreas Öchsner Advanced Finite Element Simulation with MSC Marc: Application
of User Subroutines. Springer 2017, 333p.
4. Andrzej Ambroziak MSC.Marc/Mentat. Politechniki Gdańskiej, 2017, 142p.
5. Звіт з НДР (ДЕТУТ) № держреєстрації №0116U008469, зареєстрований УкрІНТЕІ за обліковим
номером ОК №0217u003589 від 23.05.17 - 127 с.
6. Іщенко В.М., Шатаєв В.М., Щербина Ю.В. Підходи з конструктивного удосконалення
гідравлічного амортизатора типу НЦ-1100 візків пасажирських вагонів. // Вагонний парк. – №11-12
(128-129) – 2017. – С.38-42.
7. Васильков Д.В. Электромеханические приводы металлообрабатывающих станков. Расчет и
конструирование / Д.В. Васильков, В.Л. Вейц, А.Г. Схиртладзе. – СПб.: Политехника, 2011. – 759 с.
8. Paul Tran SOLIDWORKS 2018 Advanced Techniques, 2018, 752p.
9. Viačeslav Petrenko Simulation of Railway Vehicle Dynamics in Universal Mechanism Software // Procedia Engineering. Vilnius Gediminas Technical University 2016. – P. 23-29.
10. Mechanical and Morphological Properties of Polypropylene/Polyoxymethylene Blends [Електронний ресурс] / S. Wacharawichanant, T. Siripattanasak // Thailand. – 2013. Режим доступу:
URL: https://file.scirp.org/pdf/ACES_2013071111271821.pdf

Published

2018-12-23

How to Cite

Braikovs’ka, N., Ischenko, V., & Scherbina, Y. (2018). SEARCH FOR TECHNICAL SOLUTIONS TO ENSURE THE TIGHTNESS HYDRAULIC DAMPER OF PASSENGER CAR. Transport Systems and Technologies, 1(32), 81–92. https://doi.org/10.32703/2617-9040-2018-32-1-81-92