Formalization situations at train locomotive management on the basis of fuzzy logic


  • O. Gorobchenko
  • M. Slobodianiuk
  • O. Nevedrov



train control, fuzzy situation, driver, intellectual system


The locomotive driver constantly evaluates the current situation and makes managerial decisions that are in line with his main task - safe and efficient driving. Intellectual activity of the person at the same time is rather complex and can not be accurately described in the expressions of classical mathematics. The analysis of the effects on the locomotive driver in the control of the train is carried out, methods of fuzzy mathematics for the description of the train situations are offered. The current train situation is presented in the form of a fuzzy situation, which is compared with all typical situations that are in the memory of the intellectual system. A typical situation is determined which is closest to the input and the system makes a decision that corresponds to a certain typical situation. This approach allows us to implement the fastest and most straightforward algorithm for determining the state of the train while driving for an intelligent control system.


Shankar S. Looking into the Black Box: Holding Intelligent Agents Accountable //NUJS L. Rev. 2017. Т. 10. 451 p.

Russell S. J., Norvig P. Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited, 2016. 254 p.

Hopgood A. A. Intelligent systems for engineers and scientists. CRC press, 2016. 412 p.

Chen C. Handbook of pattern recognition and computer vision. World Scientific, 2015. 215 p.

White D. J. Decision theory. Routledge, 2018. 401 p.

Tartakovskyi E., Gorobchenko A., Antonovych A. Improving the process of driving a locomotive through the use of decision support systems //Восточно-Европейский журнал передовых технологий. 2016. №. 5 (3). С. 4-11.

Gorobchenko O. et al. Intelligent Locomotive Decision Support System Structure Development and Operation Quality Assessment //2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). IEEE, 2018. P. 239-243.

Бутько Т. В., Горобченко О. М. Моделювання керуючої діяльності машиніста локомотива за допомогою теорії нечітких графів //Наука и прогресс транспорта. Вестник Днепропетровского национального университета железнодорожного транспорта. 2015. №. 2 (56). С. 88-96.

Горобченко О. М. Формалізація задачі поточної оцінки безпеки руху при управлінні локомотивом //Збірник наукових праць Державного економіко-технологічного університету транспорту. Сер.: Транспортні системи і технології. 2014. №. 24. С. 214-221.

Cheng Y. H., Tian H. N. Train drivers’ subjective perceptions of their abilities to perceive and control fatigue //International journal of occupational safety and ergonomics. 2019. P. 1-17.

Cao Y., Ma L., Zhang Y. Application of fuzzy predictive control technology in automatic train operation //Cluster Computing. 2018. P. 1-10.

Zhang D. High-speed Train Control System Big Data Analysis Based on Fuzzy RDF Model and Uncertain Reasoning //International Journal of Computers, Communications & Control. 2017. Т. 12. №. 4.

Tanaka K., Wang H. O. Fuzzy control systems design and analysis: a linear matrix inequality approach. – John Wiley & Sons, 2004.

Мелихов А.Н., Берштейн Л.С., Коровин С.Я. Ситуационные советующие системы с нечеткой логикой. М.: Наука, Гл. ред. физ. - мат. лит.,1990. 273 c.

Broumi S., Ye J., Smarandache F. An extended TOPSIS method for multiple attribute decision making based on interval neutrosophic uncertain linguistic variables. Infinite Study, 2015.



How to Cite

Gorobchenko, O., Slobodianiuk, M., & Nevedrov, O. (2019). Formalization situations at train locomotive management on the basis of fuzzy logic. Transport Systems and Technologies, (34), 65–70.



Technics and techology