PROSPECTIVE ELECTROMECHANICAL SHOCK ABSORBERS
DOI:
https://doi.org/10.32703/2617-9040-2021-38-130-12Keywords:
electromechanical shock absorber, recuperation, body tilt, electric rolling stock, oscillations.Abstract
The article considers the issue of the system of the running gear of a high-speed electric train with a body inclination and the system of oscillation recovery. The authors considered the main suspension systems of the electric train body, which are currently used. The main problems of these suspension systems were put forward. Attention is paid to the use of air-spring suspension. The pipe suspension of the VL80 electric locomotive and the construction of the trolley itself are considered. The basic criteria of an estimation of efficiency of perspective electromechanical shock-absorbers on which the comparative characteristic is carried out are defined. The article describes a promising electromechanical shock absorber based on a synchronous linear motor, which can provide both body tilt and damping and recovery of oscillations. The functional scheme of control of two synchronous linear motors which are established on one cart is considered. The operation of the control system of synchronous linear motors is described. The design of a linear DC motor with permanent magnets is described. The functional control scheme of two linear DC motors with permanent magnets is considered. The design of the electromechanical shock-absorber of the Bose company is resulted. The comparative characteristic of three perspective electromechanical shock-absorbers on six criteria is carried out. Conclusions are made and an electromechanical shock absorber is selected, which provides the basic needs of rolling stock.
References
ЛІТЕРАТУРА
Омельяненко В.И., Любарский Б.Г., Якунин Д.И. Моделирование механизма наклона кузова с приводом на базе линейного электродвигателя // Залізничний транспорт України. 2011. № 2. С. 48-52.
Єріцян Б. Х. Синтез комбінованої системи нахилу кузова швидкісного електричного рухомого складу : дис. Багіша Хачиковича Єріцяна д-ра технічних. наук : 05.22.09 / Нац. техн. ун-т "Харків. політехн. ін-т", Харків, 2016. 189 с.
O. Demydov, B. Liubarskyi, V. Domanskyi, M. Glebova, D. Iakunin, A. Tyshchenko. Determination of optimal parameters of the pulse width modulation of the 4qs transducer for electriс rolling stock // Eastern-European Journal of Enterprise Technologies ISSN 1729-3774, 2018, P. 29-38. DOI: https://doi.org/10.15587/1729-4061.2018.143789.
B. Liubarskyi, N. Lukashova, O. Petrenko, T. Pavlenko, D. Iakunin, S. Yatsko, Y. Vashchenko. Devising a procedure to choose optimal parameters for the electromechanical shock absorber for a subway car // Eastern-European Journal of Enterprise Technologies ISSN 1729-3774, 2019, P. 16-25. DOI: https://doi.org/10.15587/1729-4061.2019.176304
M. Yu. Zalogin, B. A. Lyubarsky, S. N. Shuklinov, N. G. Mikhalevich, D. N. Leontiev. Study of Proportional Pressure Modulator on the Basis of Electromagnetic-Type Linear Motor // Наука и техника. 2018. №5. С. 440-446. DOI: https://doi.org/10.21122/2227-1031-2018-17-5-440-446.
B. Liubarskyi, N. Lukashova, O. Petrenko, B. Yeritsyan, Y. Kovalchuk, L. Overianova. Procedure for modeling dynamic processes of the electromechanical shock absorber in a subway car // Eastern-European Journal of Enterprise Technologies ISSN 1729-3774, 2019, P. 44-52. DOI: https://doi.org/10.15587/1729-4061.2019.181117.
P. Karimi Eskandary, A. Khajepour, A. Wong, M. Ansari. Analysis and optimization of air suspension system with independent height and stiffness tuning // International Journal of Automotive Technology, Vol. 17, No. 5, 2018, P. 807−816. DOI: https://doi.org/10.1007/s12239−016−0079−9.
Якунин Д.И., Ерицян Б.Х., Шаповалов Д.Ю. Развитие имитационного моделирования электромеханической системы привода наклона кузовов // Вісник Національного технічного університету ―Харківський політехнічний інститут‖. 2012. № 20. С. 98–103.
Lei Zuo. Design and characterization of an electromagnetic energy harvester for vehicle suspensions // Smart Materials and Structures. 2010. №19. P. 1–11.
Сергиенко А.Н., Любарский Б.Г., Самородов В.Б. Анализ конструкций электромеханических преобразователей и выбор схемы электроамортизатора неподрессоренных масс транспортного средства // Сб. науч. тр. ХНАДУ «Автомобильный транспорт». 2012. № 31. С. 18–25.
Сердобинцев Е.В., Йе Вин Хан. Вертикальные колебания метровагона с пневмоподвешиванием // Мир транспорта. 2013, № 2. С. 78–84. 18. Bart L.J. Gysen, Tom P.J. van der Sande, Johan J.H. Paulides and Elena A. Lomonova. Efficiency of a Regenerative Direct-Drive Electromagnetic Active Suspension // IEEE Transactions on Vehicular Technology. 2011, № 60 (4), P. 1384–1393. DOI: https://doi.org/10.1109/tvt.2011.2131160
Kolpakhch’yan, P. G., Shcherbakov, V. G., Kochin, A. E., Shaikhiev, A. R. Sensorless control of a linear reciprocating switchedreluctance electric machine // Russian Electrical Engineering. 2017. № 88 (6). P. 366–371. DOI: https://doi.org/10.3103/s1068371217060086.
Y. Xu, J. Zhao, J. Huang. Multiple Linear Motor Control System Based on FPGA // 17th International Conference on Electrical Machines and Systems (ICEMS) : Hangzhou, Oct. 22-25, 2014, China. P. 2327-2331.
Kimura F., Yamamoto A., Higuchi. FPGA implementation of a signal synthesizer for driving a high-power electrostatic motor // Industrial Electronics (ISIE). 2011. P. 1295-1300.
REFERENCES
Omelyanenko V.I., Lyubarsky B.G., Yakunin D.I. (2011). Modelirovaniye mekhanizma naklona kuzova s privodom na baze lineynogo elektrodvigatelya [Modeling of the body tilt mechanism with a drive based on a linear electric motor]. Zaliznychnyy transport Ukrayiny – Railway transport of Ukraine, 2, 48–52 [in Russian].
Yeritsyan B.H. (2016). Syntez kombinovanoyi systemy nakhylu kuzova shvydkisnoho elektrychnoho rukhomoho skladu [Synthesis of the combined body tilt system of high-speed electric rolling stock]. Doctor’s thesis. Kharkiv: NTU "KhPI" [in Ukrainian].
O. Demydov, B. Liubarskyi, V. Domanskyi, M. Glebova, D. Iakunin, & A. Tyshchenko (2018). Determination of optimal parameters of the pulse width modulation of the 4qs transducer for electriс rolling stock. Eastern-European Journal of Enterprise Technologies ISSN 1729-3774, 29-38. DOI: https://doi.org/10.15587/1729-4061.2018.143789.
B. Liubarskyi, N. Lukashova, O. Petrenko, T. Pavlenko, D. Iakunin, S. Yatsko, & Y. Vashchenko (2019). Devising a procedure to choose optimal parameters for the electromechanical shock absorber for a subway car. Eastern-European Journal of Enterprise Technologies ISSN 1729-3774, 16-25. DOI: https://doi.org/10.15587/1729-4061.2019.176304
M. Yu. Zalogin, B. A. Lyubarsky, S. N. Shuklinov, N. G. Mikhalevich, & D. N. Leontiev (2018). Study of Proportional Pressure Modulator on the Basis of Electromagnetic-Type Linear Motor. Science and technology, 5, 440-446. DOI: https://doi.org/10.21122/2227-1031-2018-17-5-440-446.
B. Liubarskyi, N. Lukashova, O. Petrenko, B. Yeritsyan, Y. Kovalchuk, & L. Overianova (2019). Procedure for modeling dynamic processes of the electromechanical shock absorber in a subway car. Eastern-European Journal of Enterprise Technologies ISSN 1729-3774, 44-52. DOI: https://doi.org/10.15587/1729-4061.2019.181117. 7. P. Karimi Eskandary, A. Khajepour, A. Wong, M. Ansari (2018). Analysis and optimization of air suspension system with independent height and stiffness tuning. International Journal of Automotive Technology, 5, 807−816. DOI: https://doi.org/10.1007/s12239−016−0079−9.
Yakunin D.I., Yeritsyan B.H., Shapovalov D.Yu. (2012). Razvitiye imitatsionnogo modelirovaniya elektromekhanicheskoy sistemy privoda naklona kuzovov [Development of simulation modeling of the electromechanical system of the drive of an inclination of bodies]. Visnyk Natsionalʹnoho tekhnichnoho universytetu "Kharkivsʹkyy politekhnichnyy instytut" – Bulletin of National technical university "Kharkiv polytechnic institute", 20, 98–103 [in Russian].
Lei Zuo (2010). Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Materials and Structures, 19, 1–11.
Sergienko A.N., Lyubarskiy B.G., Samorodov V.B. (2012). Analiz konstruktsiy elektromekhanicheskikh preobrazovateley i vybor skhemy elektroamortizatora nepodressorennykh mass transportnogo sredstva [Analysis of the designs of electromechanical converters and the choice of the electric shock absorber circuit for the unsprung masses of the vehicle]. Sb. nauch. tr. KHNADU "Avtomobil'nyy transport" – Col. scientific. tr. KhNAHU "Automobile transport", 31, 18–25 [in Russian].
Serdobintsev, E. V., Ye Win Han (2013). Vertikal'nyye kolebaniya metrovagona s pnevmo podveshivaniyem [Vertical Oscillations of the Metro Wagon with Pneumatic Suspension]. Mir transporta – World of transport, 2, 78–84 [in Russian]. 1. Bart L.J. Gysen, Tom P.J. van der Sande, Johan J.H. Paulides and Elena A. Lomonova (2011). Efficiency of a Regenerative Direct-Drive Electromagnetic Active Suspension. IEEE Transactions on Vehicular Technology, 60 (4), 1384–1393. DOI: https://doi.org/10.1109/tvt.2011.2131160.
Kolpakhch’yan, P. G., Shcherbakov, V. G., Kochin, A. E., Shaikhiev, A. R. (2017). Sensorless control of a linear reciprocating switchedreluctance electric machine. Russian Electrical Engineering, 88 (6), 366–371. DOI: https://doi.org/10.3103/s1068371217060086.
Y. Xu, J. Zhao, J. Huang (2014). Multiple Linear Motor Control System Based on FPGA. 17th International Conference on Electrical Machines and Systems (ICEMS). (pp. 2327-2331). Hangzhou.
Kimura F., Yamamoto A., Higuchi (2011). FPGA implementation of a signal synthesizer for driving a high-power electrostatic motor. Industrial Electronics (ISIE), 1295-1300.
Downloads
Published
How to Cite
Issue
Section
License
Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.