CONSTRUCTION OF A MODEL OF NONLINEAR DEFORMATION OF SPATIALLY-REINFORCED FIBER MATERIALS WITH DISORDERED FIBERS
DOI:
https://doi.org/10.32703/2617-9040-2022-39-15Keywords:
model of nonlinear deformation, fibrous material of multidirectional reinforcement, uniform misorientation of fibers, nonlinear deformation of the matrix, stress-strain state, effective deformation properties, influence of nonlinearity, computer implementation.Abstract
A model of nonlinear deformation of fibrous materials of multidirectional reinforcement with misoriented fibers and a physically nonlinear matrix is proposed. A spatially reinforced fibrous material is regarded as a multicomponent material with a random arrangement of fibers. It is based on stochastic differential equations of the physically nonlinear theory of elasticity. The solution to the problem of the stress-strain state and the effective properties of the composite material is constructed by the method of conditional moments of L.P. Khoroshun. An algorithm for determining the effective deformative properties of a spatially reinforced material with a physically nonlinear matrix has been developed. The solution of nonlinear equations taking into account its physical nonlinearity is constructed by an iterative method. The law of connection between macrostresses and macrostrains in a spatially reinforced material and the dependence of average strains and stresses in its matrix on macrostrains have been established. Material deformation curves are plotted for various values of the fiber volumetric content. The dependence of the effective deformative properties of the spatially reinforced material on the volumetric content of fibers has been studied. The influence of the nonlinearity of the matrix on the deformation of a spatially reinforced composite material is investigated. It has been established that the nonlinearity of the matrix has a significant effect on the effective deformative properties and the stress-strain state of spatially reinforced materials.
References
REFERENCES
Kauderer, G. Nelinejnaya mekhanika. [Non-linear mechanics]. Retrieved from http://ssily.ru/admin/uploads/states/file/aktivnyie_filtryi_garmonik [in Russian].
Blend, D. Nelineynaya dinamicheskaya teoriya uprugosti. [Nonlinear dynamic theory of elasticity]. Retrieved from https://www.nehudlit.ru›books›detail91160 [in Russian].
Lur'ye, A.I. Nelineynaya teoriya uprugosti. [Nonlinear theory of elasticity]. Retrieved from http://booksshare.net/index.php?id1=4&category=physics&author=lure-ai&book=1980&page=N. [in English].
Mitropol'skiy, YU.A., Berezovskiy, A.A., & Shkhanukov, M.KH. (2006) Prostranstvenno-vremennaya lokalizatsiya v zadachakh so svodnymi granitsami dlya nelineynogo uravneniya vtorogo poryadka. [Spatiotemporal localization in problems with summary boundaries for a second-order nonlinear equation]. Ukrainskiy Matematicheskiy Zhurnal - Ukrainian Mathematical Journal. Vol. 58, № 2. С. 202–211. [in Russian].
Mitropol'skiy, YU.A., & Berezovskiy, A.A. (2007). Zadachi z vilʹnymy mezhamy ta nelokalʹni zadachi dlya neliniynykh parabolichnykh rivnyanʹ. [Free boundary value problems and nonlocal problems for nonlinear parabolic equations]. Ukrainskiy Matematicheskiy Zhurnal - Ukrainian Mathematical Journal. Vol. 59, № 1. С. 84–97. [in Russian].
Novozhilov, V.V. Osnovy nelineynoy teorii uprugosti. [Fundamentals of the nonlinear theory of elasticity]. Retrieved from https://www.twirpx.com/file/238530/ [in Russian].
Green, A.E., & Adkins, I.E. (2000). Large classic deformations. Oxford: Clarendon Press. 325 p. [in English].
Hill, R. (1995). Theory of mechanical properties of finite strengthened materials // J. Mech. Phys. Solids. Vol. 43, N 4. P. 189-198. [in English].
Hill, R. (2007). On a class of constitutive relations for nonlinear infinitesimal elasticity // J. Mech. Phys. Solids. Vol. 55, N 5. P. 565-576. [in English].
Ogden, R.W. (2004). On the overall moduli of nonlinear elastic composite materials // J. Mech. Phys. Solids. Vol. 52, N 6. P. 265-282. [in English].
Ogden, R.W. (2008). Extremum principes in nonlinear elastic composites materials // J. Mech. Phys. Solids. Vol. 56, N 4. P. 541-554. [in English].
Vasil'êv, V.V., & Soldatov, S.A. (2009). Sootnosheniya nelineynoy mekhaniki kompozitnykh materialov [Relationships of Nonlinear Mechanics of Composite Materials]. // Mehanika kompozitnyh materialov - Mechanics of composite materials. №3. С. 3-8. [in Russian].
Kregers, A.F., & Melbardís, YU.G.(2002). Raschet deformiruyemosti prostranstvenno-armiruyemogo kompozita s uprugoplasticheskoy matritsey [Calculation of the Deformability of a Spatially Reinforced Composite with an Elastic-Plastic Matrix]. // Mehanika kompozitnyh materialov - Mechanics of composite materials.. № 4. С. 601-607. [in Russian].
Malmeyster, A.K,. & Yanson, Yu.O. (2001). Prognozirovaniye deformativnosti fizicheski nelineynykh materialov pri slozhnom napryazhenno sostoyanii [Predicting the Deformability of Physically Nonlinear Materials under a Complex Stress State]. // Mehanika kompozitnyh materialov - Mechanics of composite materials.. № 2. С. 314-318. [in Russian].
Khoroshun, L.P., & Maslov, B.P. (2003). Nelineynyye svoystva kompozitnykh materialov stokhasticheskoy struktury. [Nonlinear Properties of Composite Materials with a Stochastic Structure]. K.: Nauk. Dumka. [in Russian].
Khoroshun, L.P. (1978). Metodyi teorii sluchaynyih funktsiy v zadachah o makroskopicheskih svoystvah mikroneodnorodnyih sred [Methods of the theory of random functions in problems of macroscopic properties of microinhomogeneous media]. Prikladnaya mehanika - Applied Mechanics. Vol. 14, 2, 3–17. [in Russian].
Khoroshun, L.P. (1987). Metod uslovnyih momentov v zadachah mehaniki kompozitnyih materialov [The method of conditional moments in the problems of mechanics of composite materials]. Prikladnaya mehanika - Applied Mechanics. Vol. 23, 10. 100–108.
Khoroshun, L.P., Maslov, B.P., Shikula, E.N., & Nazarenko, L.V. (1993) Mehanika kompozitov. (Vols. 1-12). Vol. 3. Statisticheskaya mehanika i effektivnyie svoystva materialov [Mechanics of composites. (Vols. 1-12). Vol. 3. Statistical mechanics and effective properties of materials]. K.: Nauk. Dumka. [in Russian].
Guz, A.N., Khoroshun, L.P., Mihaylova, M.I., Babich, D.V., & Shikula, E.N. (2003) Mehanika kompozitov. (Vols. 1-12). Vol. 12. Prikladnyie issledovaniya [Mechanics of composites. (Vols. 1-12). Vol. 12. Applied research]. K: «A.S.K.» [in Russian].
Khoroshun, L.P., & Shikula, E.N. (2011) Deformirovanie fizicheski nelineynyih stohasticheskih kompozitnyih materialov. Deformirovanie i kratkovremennaya povrezhdaemost fizicheski nelineynyih stohasticheskih kompozitnyih materialov [The deformation of physically nonlinear stochastic composite materials. Deformation and short-term damage of physically nonlinear stochastic composite materials]. Uspehi mehaniki - (Vols. 1-6; Vol. 6.2). K.: Litera LTD. [in Russian].
Khoroshun L. P., Shikula E.N. (2002) Nelinejnye deformativnye svojstva dispersno-uprochnennyh materialov [Nonlinear deformation properties of dispersion-hardened materials] // Mehanika kompozitnyh materialov - Mechanics of composite materials. Vol. 38, 4, 473-486. [in Russian].
Khoroshun, L.P., & Shikula, E.N. (2008). Deformation of physically nonlinear stochastic composites // International Applied Mechanics. 2008.V. 44. N 12. P. 1325-1351. [in English].
Khoroshun, L.P., & Shikula, E.N. (2009). Deformation and short-term damage of physically nonlinear stochastic composites // International Applied Mechanics. V. 45. N 6. P. 1204-1232. [in English].
Khoroshun, L.P., & Shikula, E.N. (2012). Deformation and damage of composite materials of stochastic structures: physically nonlinear problems // International Applied Mechanics. V. 48. N 4. P. 359-413. [in English].
Khoroshun, L.P., & Shikula, E.N. (2014). Deformation and long-term damage of physically nonlinear fibrous materials // International Applied Mechanics. Vol. 50, N 1. P. 58-67. [in English].
Khoroshun, L.P., & Shikula, O.M. (2016) Efektyvni deformivni vlastyvosti voloknystykh kompozytnykh materialiv pry neliniynomu deformuvanni komponentiv [Effective deformable properties of fibrous composite materials in nonlinear deformation of components] // Dopovidi Natsionalʹnoyi akademiyi nauk Ukrayiny - Reports of the National Academy of Sciences of Ukraine. 6, 47-55. [in Russian].
Shikula, E.N., & Khoroshun, L. P. (2016) Nelinejnoe deformirovanie voloknistyh materialov [Nonlinear deformation of fibrous materials] // Vodnij transport. Zbіrnik naukovih prac' Kiїvs'koї derzhavnoї akademії vodnogo transportu іmenі get'mana Petra Konashevicha-Sagajdachnogo - Water transport. Collection of scientific works of the Kyiv State Academy of Water Transport named after Hetman Petro Konashevich-Sagaydachny. K.: KDAVT. Vol 25, 2, 29-36. [in Russian].
Khoroshun, L.P., & Shikula, E.N. (2011) Thermoelastic properties of spatially reinforced materials // International Applied Mechanics. Vol. 47, 1, 13-20. [in English]
Khoroshun, L.P., & Shikula, E.N. (2011) Thermoelastic properties of spatially reinforced materials // International Applied Mechanics. Vol. 47, 1, 13-20. [in English]
Shikula, E.N. (2021) Modelʹ deformuvannya voloknystykh materialiv bahatospryamovanoho armuvannya z rozoriyentovanymy voloknamy [Model of deformation of fibrous materials of multidirectional reinforcement with disoriented fibers] // Transportni systemy i tekhnolohiyi - Transport systems and technologies. K.: DUIT, 37, 119-129. [in Russian].
Kregers, A. F. (2008). Matematicheskoe modelirovanie termicheskogo rasshirenija prostranstvenno armiro-vannyh kompozitov [Mathematical modeling of thermal expansion of spatially reinforced composites] // Mehanika kompozitnyh materialov - Mechanics of composite materials. Vol. 24, 3, 433-441. [in Russian].
Downloads
Published
How to Cite
Issue
Section
License
Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.











