Use of modified basalt fiber in transport construction

Authors

DOI:

https://doi.org/10.32703/2617-9059-2023-42-5

Keywords:

basalt fiber, transport construction, heat treatment, fiber structure, alkali resistance of fibers, X-ray diffraction patterns, spectra.

Abstract

Basalt fiber is a promising material that can be used to create a new class of building materials. It has a number of advantages, including high strength, low weight and resistance to chemicals. One of the disadvantages of basalt fiber is its low alkali resistance. In an alkaline environment, the fiber is destroyed, which limits its use in building materials exposed to alkalis. The paper investigates the effect of heat treatment on the alkali resistance of basalt fiber. It was found that heat treatment at a temperature of 500 0C increases the alkali resistance of the fiber by 80%. This is due to the compaction of the fiber structure and the formation of iron-oxygen tetrahedra on its surface, which are resistant to alkalis. The authors of the article substantiate the feasibility of using heat-treated basalt fiber in transport construction. This material can be used to manufacture new types of building materials that are resistant to alkalis.

References

Tolmachev, S. N. (2013). Razvitie teorii razrusheniya i stojkosti dorozhnyh cementnyh betonov pri dejstvii agressivnyh faktorov [Development of the theory of destruction and resistance of road cement concrete under the action of aggressive factors]. Extended abstract of Doctor’s thesis. Harkov: Ukr. derzh. akad. zaliznichn. tr-ra [in Ukrainian].

Klyuev, S. V. (2012) Vysokoprochnyj fibrobeton dlya promyshlennogo i grazhdanskogo stroitelstva. Inzhenerno-Stroitelnyj zhurnal, 8, 61-68.

Ferrante, L., Tirillò, J., Sarasini, F., Touchard, F., Ecault, R., Urriza, M. V., ... & Mellier, D. (2015). Behaviour of woven hybrid basalt-carbon/epoxy composites subjected to laser shock wave testing: Preliminary results. Composites Part B: Engineering, 78, 162-173. https://doi.org/10.1016/j.compositesb.2015.03.084.

Ray, B. C. (2015) A review on mechanical behavior of FRP composites at different loading speeds. Critical reviews in solid state and materials sciences, 40, 119-135. https://doi.org/10.1080/10408436.2014.940443.

Subagia, I. A., Kim, Y., Tijing, L. D., Kim, C. S., & Shon, H. K. (2014). Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers. Composites Part B: Engineering, 58, 251-258., 251-258, https://doi.org/10.1016/j.compositesb.2013.10.027.

Bentz, D. P., Snyder, K. A., & Ahmed, A. (2015). Anticipating the setting time of high-volume fly ash concretes using electrical measurements: feasibility studies using pastes. Journal of Materials in Civil Engineering, 27(3), 04014129. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001065.

Lim, J. I., Rhee, K. Y., Kim, H. J., & Jung, D. H. (2014). Effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites. Carbon letters, 15(2), 125-128. https://doi.org/10.5714/CL.2014.15.2.125.

Doroshenko O. Yu., Doroshenko Yu. M. (2011) Dispersno-armovanij beton – nadijnij ta efektivnij material dlya transportnogo budivnictva (prodovzhennya). Transportnoe stroitelstvo Ukraini, 5, 16-20. 9. Khamees, S. S., Kadhum, M. M., & Nameer, A. A. (2020). Effects of steel fibers geometry on the mechanical properties of SIFCON concrete. Civil Engineering Journal, 6(1), 21-33. http://dx.doi.org/10.28991/cej-2020-03091450.

Kumbhar, V. P. (2014). An overview: basalt rock fibers-new construction material. Acta Engineering International, 2(1), 11-18.

Chatiras, N., Georgiopoulos, P., Christopoulos, A., & Kontou, E. (2019). Thermomechanical characterization of basalt fiber reinforced biodegradable polymers. Polymer Composites, 40(11), 4340-4350. https://doi.org/10.1002/pc.25295.

Wang, G., Zhang, D., Wan, G., Li, B., & Zhao, G. (2019). Glass fiber reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability. Polymer, 181, 121803. https://doi.org/10.1016/j.polymer.2019.121803.

Gupta, R., & Biparva, A. (2015). Innovative test technique to evaluate “self-sealing” of concrete. Journal of Testing and Evaluation, 43(5), 1091-1098.

Brühwiler, E. (2018). “Structural UHPFRC” to enhance bridges. In Proceedings of the 2nd International Conference on UHPC Materials and Structures UHPC 2018-China (Vol. 129, pp. 140-158). RILEM Publications SARL.

Doroshenko, O. Yu. (2021) Obgruntuvannya mozhlivosti vikoristannya bazaltovogo volokna yak komponenta cementobetonu dlya transportnogo budivnictva [Justification of the possibility of using basalt fiber as a component of cement concrete for transport construction]. Harkiv: Zbirniku naukovih prac UkrDUZT Harkiv, 198, 22-29 [in Ukrainian].

Downloads

Published

2023-12-12

How to Cite

Doroshenko, O. (2023). Use of modified basalt fiber in transport construction. Transport Systems and Technologies, (42), 58–68. https://doi.org/10.32703/2617-9059-2023-42-5

Issue

Section

Technics and techology