Research on graphic data formats for compact representation and comparison of images
DOI:
https://doi.org/10.32703/2617-9059-2024-43-14Keywords:
image, compression, lossy, lossless, hree-level representation, balancing, correlation functionAbstract
This article investigates common methods of lossy and lossless compression of graphic information. The advantages and disadvantages of compression methods are identified as a result of the research. A comparative analysis of the main capabilities of graphic information compression methods is conducted. The relevance lies in the efficient transmission, processing, and storage of graphic information, as large data volumes require increased network bandwidth and significant resources for data storage. The practical significance lies in solving the task of effectively reducing data sizes by applying well-known compression methods. Based on the study of graphic data formats, the development of algorithms for the computational scheme of "precise" processing of halftone images for pattern recognition is presented. Such a scheme rewrites a multigradient image into a three-level representation and implements a balancing procedure, which allows forming image features in a more compact form and computing the correlation function faster. The effectiveness of using developed methods of compact image representation with correlation comparison of balancing curves is demonstrated compared to traditional correlation comparison of images.
References
Afanasyev, D., & Zorenko, Ya. (2019). Sistematizacia technologiy stisnennya zobrazhen u sistemakh poligrafichnogo reproduktuvannya. [Systematization of image compression technologies in polygraphic reproduction systems]. Printing technology and technique, 1(63), 45–57. https://doi.org/10.20535/2077-7264.1(63).2019.166144.
Gertsiy, O., & Butryk, N. (2021). Comparative analysis of compact methods representations of graphic information. Collection of scientific works of the State University of Infrastructure and Technologies series "Transport Systems and Technologies", (37), 130–143. https://doi.org/10.32703/2617-9040-2021-37-13.
Grinyov, DV, & Zakirov, ZZ (2010). Metody stysnennya zobrazhenʹ v systemakh tsyfrovoyi obrobky danykh [Methods of image compression in digital data processing systems]. Information processing systems, (2), 66-70.
Glukhov, V.S., & Khomits, V.M. (2017). Pidkhid do stysnennya zobrazhenʹ bez vtrat metodom JPEG-LS [The approach to lossless image compression using the JPEG-LS method]. Bulletin of the National University "Lviv Polytechnic". Series: Computer Systems and Networks, (881), 32-40. https://doi.org/10.23939/csn2017.881.032.
ZainEldin, H., Elhosseini, M. A., & Ali, H. A. (2015). Image compression algorithms in wireless multimedia sensor networks: A survey. Ain Shams Engineering Journal, 6(2), 481-490. https://doi.org/10.1016/j.asej.2014.11.001.
Viola, I., Řeřábek, M., Bruylants, T., Schelkens, P., Pereira, F., & Ebrahimi, T. (2016, December). Objective and subjective evaluation of light field image compression algorithms. In 2016 Picture Coding Symposium (PCS) (pp. 1-5). IEEE. https://doi.org/10.1109/PCS.2016.7906379.
Gunasheela, K. S., & Prasantha, H. S. (2018). Satellite image compression-detailed survey of the algorithms. In Proceedings of International Conference on Cognition and Recognition (pp. 187-198). Springer, Singapore. http://dx.doi.org/10.1007/978-981-10-5146-3_18.
Zubko, R.A. (2013). Alhorytmy stysnennya zobrazhenʹ [Image compression algorithms]. Eastern European Journal of Advanced Technology, 1(2), 40-44. http://dx.doi.org/10.1007/978-981-10-5146-3_18.
Korpan, Ya.V. (2015). Methods and algorithms for compact representation of graphic information in computer systems. Technology Audit and Production Reserves, 3(2(23), 32–36. https://doi.org/10.15587/2312-8372.2015.43330.
Mohammadpour, T., & Mollaei, M., (2009) "ECG Compression with Thresholding of 2-0 Wavelet Transform Coefficients and Run Length Coding", European Journal of Scientific Research, 27(2), 248-257.
Zubko, R.A. (2014). Fractal image compression method. Eastern-European Journal of Enterprise Technologies, 6(2(72), 23–28. https://doi.org/10.15587/1729-4061.2014.33445.
Welstead, S. T. (1999). Fractal and wavelet image compression techniques (Vol. 40). Spie Press. https://doi.org/10.1117/3.353798.
T. Guo, T. Zhang, E. Lim, M. López-Benítez, F. Ma, & L. Yu, (2022). A Review of Wavelet Analysis and Its Applications: Challenges and Opportunities. IEEE Access, (10), 58869-58903, https://doi.org/10.1109/ACCESS.2022.3179517.
B. Chen, Y. Li, N. Zeng and W. He, (2019). "Fractal lifting wavelets for machine fault diagnosis", IEEE Access, (7), 50912-50932. https://doi.org/10.1109/ACCESS.2019.2908213.
Garmash, V.V., Kulyk, A.Y., (2010). Blocking Artifacts Reduction Method in JPEG-images. Artificial Intelligence, (4), 177-184.
Russ, J.C. (2016). The Image Processing Handbook. CRC Press, 7th edition. 1053.
Gonzalez, R.C., & Woods, R.E.. (2017). Digital Image Processing. Pearson, New York, 4 editions. 1192.
Timchenko, L. I., Basov, V. I., Gertsiy, O. A., Kokriatskaia, N. I., & Ivasiyk, I.D., (2010). Rospiznavannya pivtonovych zobrazhen za shemoyu "gruboi" - "tochnoi" obrobki: Monografia. [Recognition of halftone images according to the scheme of "rough" - "accurate" processing: Monograph]. Kyiv - Naukova Dymka, p. 180.
Gertsiy, A., Timchenko, L., Kutaev, Yu., Zlepko, S. & A, N.. (1999). Method of recursive-contour preparing for image normalization. Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP'99), 414-418.
Gertsiy, O. (2023). Models of criterion evaluation of the image processing systems effectiveness. Collection of scientific works of the State University of Infrastructure and Technologies series "Transport Systems and Technologies", (41), 143-154. https://doi.org/10.32703/2617-9059-2023-41-12.
Timchenko, L. I., Kokriatskaia, N. I., Pavlov, S. V., Stepaniuk, D. S., Kutaev, Y. F., Kotyra, A., Sagymbai, A, & Abdihanov, A. (2020, October). Q-processors for real-time image processing. In Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2020 (Vol. 11581, pp. 116-123). SPIE. https://doi.org/10.1117/12.2580230.
Orazayeva, A., Wójcik, W., Pavlov, S., Tymchenko, L., Kokriatska, N., Tverdomed, V., Tussupov, J., Abdikerimova, G., V., & Semenova, L. (2022, December). Biomedical image segmentation method based on contour preparation. In Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2022 (Vol. 12476, pp. 21-26). SPIE. https://doi.org/10.1117/12.2657929.
Dumitrescu, C.; Raboaca, M.S.; Felseghi, R.A. (2021). Methods for Improving Image Quality for Contour and Textures Analysis Using New Wavelet Methods. Applied Sciences, (11), 3895. https://doi.org/10.3390/app11093895.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.