EXTENSION OF ELECTRIC LOCOMOTIVE OPERATION WITH USE OF NEW NEWEST MATERIALS IN CAPITAL REPAIR

Authors

  • V. Danylevskyi
  • D. Zaika

DOI:

https://doi.org/10.32703/2617-9040-2018-32-1-14-25

Keywords:

traction motor, unscheduled repairs, traction electrical machines, electrical insulation system, class H and C heat resistance, electrical steel, armature core

Abstract

In the article, the analysis of the work of the traction engines and the reasons for their premature failure, which lead to unscheduled repair of electric locomotives and, accordingly, to spending money. Proposals for the complex modernization of traction electric cars, in particular the application of electrical insulation systems with the class of heat resistance H and C, as well as the replacement of the electrotechnical steel of the anchor core to the modern ones at 2212 and 1213, are offered. The propulsion engines operate practically continuously in the boundary conditions caused by voltage fluctuations in the contact network and the changes in the currents consumed, and the latter vary from 0, 25 / nm. to 2 / n. , which leads to even more power losses. The change in voltage in DC contact networks is respectively 2200 - 4000 V. All these facts create special requirements for the electric and mechanical strength of the traction motor units. The isolation of their windings in relation to the enclosure must withstand the test voltage U = (2.25U + 2000) B. For motors receiving power from a direct current contact network, U is equal to the idle speed at the engine's collector.

References

1. Shavkun, VM (2014). Diagnosis of electric traction electric vehicles. East European Journal of Advanced Technology, (1 (7)), 48-53.
2. Danilevsky, V.I., Chernykh, Yu.M., & Slivovska, L.V. (2015). Analysis of the availability, requirements for the design and operation of the traction engines of the electric railway rolling stock. Collection of scientific works of the State economic-technological university of transport. Series: Transport Systems and Technologies, (26-27), 102-110.
3. Gubarevich, O. V. (2016). Reliability and diagnostics of electrical equipment.
4. Zinkivsky, AM, & Gusev, V.O. (2015). Improvement of efficiency of traction electric motors of electric locomotives. Collection of scientific works of the Ukrainian State University of Railway Transport, 2 (158).
5. Neyman, V. Y., & Neyman, L. A. (2015). Impact synchronous electromagnetic machines forced cooling systems constructions estimation. Journal of Siberian Federal University. Engineering & Technologies, 8(2), 166.
6. Dick, O.V. (2015). Increasing the degree of cylindrical directional circulations by the discrete electrocontact cement method (doctoral dissertation, Khmelnytskiy national university).
7. Danilevsky, V.I., & Tarasyuk, V.M. (2014). Construction of electric cars of electric trains of Ukrainian railways. Monograph / Danilevsky VI, Tarasyuk VM-K .: Publishing house DETUT.
8. Li, Y., Zhang, Y., & Zhang, T. (2014). Simulation and experimental studies of speed sensorless control of permanent magnet synchronous motors for mine electric locomotive drive. International Journal of Control and Automation, 7(1), 55-68.
9. Neyman L. A., Neyman V. Yu., Shabanov AS. Simplified calculation of electromagnetic shock drive in re-short-term mode of operation // Electrotechnics. - 2014. - No. 12. - P. 50-53.
10. Gubarevich, O.V. (2015). On the issue of accelerated tests on the reliability of the machine of direct current.

Література:

1. Шавкун В. М. Діагностування тягових електричних машин електротранспорту //Восточно-Европейский журнал передовых технологий. – 2014. – №. 1 (7). – С. 48-53.
2. Данилевський В. І., Черних Ю. М., Сливовська Л. В. Аналіз наявності, вимог до конструкції та роботи тягових двигунів електрорухомого складу залізниць //Збірник наукових праць Державного економіко-технологічного університету транспорту. Серія: Транспортні системи і технології. – 2015. – №. 26-27. – С. 102-110.
3. Губаревич О. В. Надійність і діагностика електрообладнання. – 2016.
4. Зіньківський А. М., Гусєв В. О. Підвищення працездатності тягових електродвигунів електровозів //Збірник наукових праць Українського державного університету залізничного транспорту. – 2015. – Т. 2. – №. 158.
5. Neyman V.Y., Neyman L A. Impact synchronous electromagnetic machines forced cooling systems constructions estimation //Journal of Siberian Federal University. Engineering & Technologies. – 2015. – Т. 8. – №. 2. – С. 166.
6. Диха О.В. Підвищення зносостійкості циліндричних напрямних ковзання методом дискретної електроконтактної цементації : дис. – Хмельницький національний університет, 2015.
7. Данилевський В. І., Тарасюк В. М. Конструкція електричних машин електропоїздів залізниць України : монографія / Данилевський ВІ, Тарасюк В.М. – К.: Видавництво ДЕТУТ, 2014.
8. Li Y., Zhang Y., Zhang T. Simulation and experimental studies of speed sensorless control of permanent magnet synchronous motors for mine electric locomotive drive // International Journal of Control and Automation. – 2014. – Т. 7. – №. 1. – С. 55-68.
9. Нейман Л. А., Нейман В. Ю., Шабанов А. С. Упрощенный расчет электромагнитного ударного привода в повторно-кратковременном режиме работы // Электротехника. – 2014. – №. 12. – С. 50-53.
10. Губаревич О. В. К вопросу ускоренных испытаний на надежность машины постоянного тока. – 2015.

Published

2018-12-23

How to Cite

Danylevskyi, V., & Zaika, D. (2018). EXTENSION OF ELECTRIC LOCOMOTIVE OPERATION WITH USE OF NEW NEWEST MATERIALS IN CAPITAL REPAIR. Transport Systems and Technologies, 1(32), 14–25. https://doi.org/10.32703/2617-9040-2018-32-1-14-25