METHOD OF QUANTIFICATION OF RISK OF TECHNICAL SYSTEM

Authors

  • A. Zavgorodnya
  • V. Zavgorodnii

DOI:

https://doi.org/10.32703/2617-9040-2018-32-2-87-95

Keywords:

man-made object, source of danger, probability, individual risk, social risk, risk assessment, risk forecasting

Abstract

Risk analysis is important on dangerous man-made objects due to the need to provide anecdotal safety and prevent accidents. It involves obtaining quantitative estimates of the potential danger of man-made objects and recommendations for its reduction through the implementation of appropriate engineering, technical and organizational measures. The method of quantitative analysis of the risk of accidents on man-made objects is considered the basis of the methodology for determining the risks of man-made objects and modeling the processes of occurrence and development of accidents. We introduced the application of a mathematical probabilistic model for predicting individual and social risk using an automated computer system. According to the Cabinet of Ministers of Ukraine "On the identification and declaration of safety of high-risk objects", the declaration of dangerous industrial activities is carried out, an important direction of implementation of which is the development of a method for quantitative analysis of the risk of accidents on man-made objects. The method of risk analysis allows predicting the distribution of hazardous areas in the event of an accident, the distribution of workers at the facility at the accident (probabilistic), and the individual and social risks for workers in the production area (regularity). Risk forecasting allows employees to be informed about risks, improve the effectiveness of the personnel protection measures being developed in the event of an accident, and prevent the negative consequences of accidents.

References

1. Liu, H. C., Liu, L., & Liu, N. (2013). Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert systems with applications, 40(2), 828-838.
2. Tinga, T. (2013). Introduction: The Basics of Failure. In Principles of Loads and Failure Mechanisms (pp. 3-10). Springer, London.
3. Levitin, G., Xing, L., Amari, S. V., & Dai, Y. (2013). Reliability of non-repairable phased-mission systems with propagated failures. Reliability Engineering & System Safety, 119, 218-228.
4. Han, X., & Zhang, J. (2013, December). A combined analysis method of FMEA and FTA for improving the safety analysis quality of safety-critical software. In Granular computing (GrC), 2013 IEEE international conference on (pp. 353-356). IEEE.
5. Otrokh, S.I., Zavgorodnii, V.V., & Zavgorodnya, G.A. (2018). Analiz vzayemozv'yazku zbytku z ryzykom pry vynyknenni tekhnohennykh avariy v kontseptsiyi pryynyatnoho ryzyku [Analysis of interaction of risk damage in the case of technogenic accidents in the concept of acceptable risk]. Telekomunikatsiyni ta informatsiyni tekhnolohiyi – Telecommunication and Information Technologies, 2 (59), 117-123, DOI: 10.31673/2412-4338-2018-0-2-117-123 [in Ukrainian]
6. Brunelli, M. (2014). Introduction to the analytic hierarchy process. Springer.
7. Lu, J. M., & Wu, X. Y. (2014). Reliability evaluation of generalized phased-mission systems with repairable components. Reliability Engineering & System Safety, 121, 136-145.
8. Zavgorodnii, V.V., & Zavgorodnya, G.A. (2018). Metod podannya znanʹ pro otsinku ryzyku vynyknennya tekhnohennykh avariy [Method of representation of knowledge about the assessment of risk of appearance of technogenic accidents]. Visnyk Kremenchutsʹkoho natsionalʹnoho universytetu imeni Mykhayla Ostrohradsʹkoho – Bulletin of Kremenchuk Mikhaylo Ostrohradskyi National University, 4 (111), 43-48, DOI:10.30929/1995-0519.2018.4.43-48 [in Ukrainian]
9. Xing, L., & Levitin, G. (2013). BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures. Reliability Engineering & System Safety, 112, 145-153.
10. Wu, W., Tang, Y., Yu, M., & Jiang, Y. (2014). Reliability analysis of a k-out-of-n: G repairable system with single vacation. Applied Mathematical Modelling, 38(24), 6075-6097.
11. Ruijters, E., & Stoelinga, M. (2015). Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Computer science review, 15, 29-62.
12. Hua, D., Elsayed, E. A., Al-Khalifa, K. N., & Hamouda, A. S. (2015, October). Reliability estimation of load sharing capacity-c-out-of-n pairs: G Balanced system. In Prognostics and System Health Management Conference (PHM), 2015 (pp. 1-8). IEEE.
13. Zhai, Q., Xing, L., Peng, R., & Yang, J. (2015). Multi-Valued Decision Diagram-Based Reliability Analysis of $ k $-out-of-$ n $ Cold Standby Systems Subject to Scheduled Backups. IEEE Transactions on Reliability, 64(4), 1310-1324.
14. Vetoshkin, A.G. (2001). Tekhnogennyy risk i bezopasnost' [Technogenic risk and safety]. Penza: PSU, [in Russian] 15. Zavgorodnii, V.V., & Zavgorodnya, G.A. (2018). Modelʹ upravlinnya ryzykom obʺyektiv pidvyshchenoyi nebezpeky [Risk management model of high danger objects]. Mizhnarodnyy naukovyy zhurnal "Internauka" – International scientific journal «Internauka», 18 (58), DOI:10.25313/2520-2057-2018-18-4261 [in Ukrainian]
16. Coit, D. W., Chatwattanasiri, N., Wattanapongsakorn, N., & Konak, A. (2015). Dynamic k-out-of-n system reliability with component partnership. Reliability Engineering & System Safety, 138, 82-92.
17. Otrokh, S.I., Zavgorodnii, V.V., & Zavgorodnya, G.A. (2018). Analiz metodiv podannya znanʹ pry rozpiznavanni nadzvychaynykh sytuatsiy tekhnohennoho kharakteru [Analysis of the methods of presentation of knowledge in the recognition of emergency situations of anthropogenic nature]. Naukovi zapysky Ukrayinsʹkoho naukovo-doslidnoho instytutu zvʺyazku. – Scientific notes of the Ukrainian Research Institute of Communication, 3 (51), 36-46 [in Ukrainian]

Література:

1. Liu H. C., Liu L., Liu N. Risk evaluation approaches in failure mode and effects analysis: A literature review //Expert systems with applications. – 2013. – Т. 40. – №. 2. – С. 828-838.
2. Tinga T. Introduction: The Basics of Failure //Principles of Loads and Failure Mechanisms. – Springer, London, 2013. – С. 3-10.
3. Levitin G. et al. Reliability of non-repairable phased-mission systems with propagated failures //Reliability Engineering & System Safety. – 2013. – Т. 119. – С. 218-228.
4. Han X., Zhang J. A combined analysis method of FMEA and FTA for improving the safety analysis quality of safety-critical software //Granular computing (GrC), 2013 IEEE international conference on. – IEEE, 2013. – С. 353-356.
5. Отрох С.І. Аналіз взаємозв‘язку збитку з ризиком при виникненні техногенних аварій в концепції прийнятного ризику / С.І. Отрох, В.В. Завгородній, Г.А. Завгородня // Телекомунікаційні та інформаційні технології. – 2018. №2 (59). – С. 117-123. DOI: 10.31673/2412-4338-2018-0-2-117-123
6. Brunelli M. Introduction to the analytic hierarchy process. – Springer, 2014.
7. Lu J. M., Wu X. Y. Reliability evaluation of generalized phased-mission systems with repairable components //Reliability Engineering & System Safety. – 2014. – Т. 121. – С. 136-145.
8. Завгородній В.В. Метод подання знань про оцінку ризику виникнення техногенних аварій / В.В. Завгородній, Г.А. Завгородня // Вісник Кременчуцького національного університету імені Михайла Остроградського. – Кременчук: КрНУ, 2018. – Випуск 4 (111). – С. 43–48. DOI:10.30929/1995-0519.2018.4.43-48
9. Xing L., Levitin G. BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures //Reliability Engineering & System Safety. – 2013. – Т. 112. – С. 145-153.
10. Wu W. et al. Reliability analysis of a k-out-of-n: G repairable system with single vacation //Applied Mathematical Modelling. – 2014. – Т. 38. – №. 24. – С. 6075-6097.
11. Ruijters E., Stoelinga M. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools //Computer science review. – 2015. – Т. 15. – С. 29-62.
12. Hua D. et al. Reliability estimation of load sharing capacity-c-out-of-n pairs: G Balanced system //Prognostics and System Health Management Conference (PHM), 2015. – IEEE, 2015. – С. 1-8.
13. Zhai Q. et al. Multi-Valued Decision Diagram-Based Reliability Analysis of $ k $-out-of-$ n $ Cold Standby Systems Subject to Scheduled Backups //IEEE Transactions on Reliability. – 2015. – Т. 64. – №. 4. – С. 1310-1324.
14. Ветошкин А.Г. Техногенный риск и безопасность / А.Г. Ветошкин, К.Р. Таранцева // – Пенза: ПГУ, 2001. – 171 c.
15. Завгородній В.В. Модель управління ризиком об‘єктів підвищеної небезпеки /В.В. Завгородній, Г.А. Завгородня // Міжнародний науковий журнал «Інтернаука». – 2018. №18 (58). DOI:10.25313/2520-2057-2018-18-4261
16. Coit D. W. et al. Dynamic k-out-of-n system reliability with component partnership //Reliability Engineering & System Safety. – 2015. – Т. 138. – С. 82-92.
17. Отрох С.І. Аналіз методів подання знань при розпізнаванні надзвичайних ситуацій техногенного характеру / С.І. Отрох, В.В. Завгородній, Г.А. Завгородня // Наукові записки Українського науково-дослідного інституту зв‘язку. – 2018. №3 (51). – С. 36-46.

Published

2018-12-23

How to Cite

Zavgorodnya, A., & Zavgorodnii, V. (2018). METHOD OF QUANTIFICATION OF RISK OF TECHNICAL SYSTEM. Transport Systems and Technologies, 2(32), 87–95. https://doi.org/10.32703/2617-9040-2018-32-2-87-95

Issue

Section

Information, telecommunication and resource saving technologies