Modeling of traction-energy processes in the electric traction system

Authors

  • A. Sidorenko

DOI:

https://doi.org/10.32703/2617-9040-2020-35-10

Keywords:

mathematical model, traction network, space-oriented scheme, electric trains, substitution scheme

Abstract

The paper presents a mathematical model of a subway electric traction system, taking into account the variation of the parameters of the system objects according to their cross-connections, spatial orientation and subjective factors. The peculiarities of mathematical modeling of the subway traction network with decentralized bilateral power supply of the contact rail from two traction substations are outlined, its substitution scheme is shown. A mathematical model of the subway traction network with decentralized two-sided feed of the contact rail from two traction substations has been developed. An approach to mathematical modeling of electric traction rolling stock as an object of formation of energy exchange processes in an electric traction system is proposed. The mathematical model is based on the presentation of its traction and braking characteristics in the form of tabular functions using interpolation to find the intermediate values of traction and braking force, as a function of not only the linear speed of movement but also other values. To confirm the correctness of the proposed mathematical fashion for the study of traction and energy processes in the system of electric traction, its simulation was performed. The simulation model was developed and simulated using Matlab software using the Simulink simulation graphical environment. As a traction moving unit was considered a subway car model 81-7036, was formed a conditional profile of movement with characteristic elements for the subway, namely the profile of movement with three interstation sections of equal length (1700 m) with different elements (platform, slope, lift). The result was a comparative evaluation of the simulation results obtained with the data package obtained during the operation of the real object and the correspondence of the obtained results with the passport data of the real object and the experimental data of his work. Attention is drawn to the need to take into account the variation of the electrical parameters of the traction network during rolling stock rolling stock.

References

Yatsko S., Sytnik, B., Vashchenko Y., Sidorenko A., Liubarskyi B., Veretennikov I., Glebova M. Comprehensive approach to modeling dynamic processes in the system of underground rail electric traction. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 1, № 9. P. 48–57. doi: 10.15587/1729-4061.2019.154520.

Yatsko S., Sidorenko A., Vashchenko Y., Lyubarskyi B., Yeritsyan B. Method to improve the efficiency of the traction rolling stock with onboard energy storage. International journal of renewable energy research. 2019. Vol. 9, № 2. P. 848–858.

Панченко С. В., Блиндюк В. С., Бабаєв М. М., Яцько С. І., Ващенко Я. В. Системи електропостачання електричного рухомого складу залізниць і метрополітенів. Харків: УкрДУЗТ, 2018. 243 с.

Яцько С. І., Карпенко Н. П., Ващенко Я. В., Панченко В. В. Розвиток обладнання розподільних пристроїв тягового електропостачання. Збірник наукових праць УкрДУЗТ. 2017. № 172. С. 37–48.

doi: 10.18664/1994-7852.172.2017.116689

Сулим А. А. Исследование энергообменных процессов при эксплуатации подвижного состава метрополитена с системами рекуперации и накопителями энергии. Інформаційні, телекомунікаційні та ресурсозберігаючі технології. 2016. Вип. 28. С. 137–146.

Шевлюгин М. В. Энергосберегающие технологии на железнодорожном транспорте и метрополитенах, реализуемые с использованием накопителей энергии: автореф. дис. … д-ра тех. наук: спец. 05.09.03. Москва, 2013. 339 с.

Sulym A. On the question of a reasonability of capacitive storages use in the metro. Електромеханічні і енергозберігаючі системи. 2015. Вип. 1, № 29. C. 94–100.

Саблін О. І. Дослідження ефективності процесу рекуперації електроенергії в умовах метрополітену. Східно-Європейський журнал передових технологій. 2014. Вип. 6, № 8. С. 9–13.

doi: 10.15587/1729-4061.2014.30483.

Sytnik B., Bryksin V., Yatsko S., Vashchenko Y. Construction of an analytical method for limiting the complexity of neural-fuzzy models with guaranteed accuracy. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 2, № 4. P. 6–13. doi: 10.15587/1729-4061.2019.160719.

Могила В. С., Ананьева О. С., Загорцев В. А. Подольская В. Н. Имитационная модель совместной работы системы тягового электроснабжения и электрического подвижного состава. Современные технологии. Системный анализ. Моделирование. 2017. Вып. 2, № 54. С. 191–196.

F. Du, J. H. He, L. Yu, M. X. Li, Z. Q. Bo, A. Klimek Modeling and Simulation of Metro DC Traction System with Different Motor Driven Trains. 2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu, 2010. P. 1–4. doi: 10.1109/APPEEC.2010.5448372.

M. X. Li, J. H. He, Z. Q. Bo, H. T. Yip, L. Yu, A. Klimek Simulation and algorithm development of protection scheme in DC traction system. 2009 IEEE Bucharest PowerTech. Bucharest, 2009. P. 1–6.

doi: 10.1109/ptc.2009.5282111.

R. Mathew, F. Flinders, W. Oghana Locomotive "Total System" Simulation Using Simulink. International Conference on Electric Railways in a United Europe. Amsterdam, 1995. P. 202–206. doi: 10.1049/cp:19950207.

Brenna, M., Foiadelli, F., Leone, C., & Casiraghi, F. M. Modeling and Simulation of Railway Network in Compliance with Technical Specifications for Interoperability. 2019 AEIT International Annual Conference. Florence, 2019. P. 1-6. doi: 10.23919 / AEIT.2019.8893360.

Быков Е. И., Панин Б. В., Пупынин В. Н. Тяговые сети метрополитенов. Москва: Транспорт, 1987. 256 с.

Published

2020-06-25

How to Cite

Sidorenko, A. (2020). Modeling of traction-energy processes in the electric traction system. Transport Systems and Technologies, (35), 89–101. https://doi.org/10.32703/2617-9040-2020-35-10