CONCEPTUAL FUNDAMENTALS OF FREIGHT MAGNETOLEVITATION TRANSPORT SYSTEM CONSTRUCTION

Authors

DOI:

https://doi.org/10.32703/2617-9040-2022-40-7

Keywords:

freight transportation, speed of movement, magnetic levitation system, unmanned technologies, container platform.

Abstract

An analysis of the transport systems current state in Ukraine has shown that the main problem in this area is the lack of transport infrastructure capacity, due to low route speeds for most transport modes and low levels of traffic organization and management. The level of rail container transport, the most common and perspective type of freight transportation is also low compared to European countries. Therefore, the main idea of the article is to justify the need for the introduction of fundamentally new transport technologies that will help reduce or eliminate the problems of freight transport, and so the article is relevance. The possibility of using magnetic technologies that exclude contact of a vehicle with a road structure, for freight transportation is investigated. The authors consider the main structural elements, functions and possible options of the magnetic levitation transport system of freight transport. The practical value of the work is that the use of magnetic levitation container platforms will significantly increase the intensity and speed of the conveyor sending of each container with a decrease in energy consumption, which will significantly affect the improvement of cargo logistics. The main results of the work: the conceptual bases of construction of unmanned magnetic levitation vehicles and the main systems of their infrastructure are formulated, it is shown that the implementation of the function of drone for the vehicle is possible only if permanent levitation in all sections of the freight transportation will be provided.

References

Skalozub, V. V., Solovyev, V. P.,. Zhukovitskiy, I. V. & Goncharov K. V. (2013). Intellektualnye transportnye sistemy zheleznodorozhnogo transporta (osnovy innovatsionnykh tekhnologiy) [Intellectual transport systems of railway transport (basics of innovative technologies)]. Dnepropetrovsk: Dnepropetr. nats. un-t zh.-d. transp. im. akad. V. Lazaryana [in Russian].

Mironenko, V., K. & Aleksіychuk, N. M. (2013). Prіoriteti rozvitku konteynernikh perevezen zalіznitsyami Ukraїni [Priorities for the development of container transportation by railways of Ukraine] Problemi ta perspektivi rozvitku transportnikh sistem v umovakh reformuvannya zalіznichnogo transportu: upravlіnnya, ekonomіka і tekhnologії. Ser. «Tekhnіka, tekhnologіya» – Problems and prospects of transport systems development in the conditions of railway transport reforming: management, economy and technology. Series. "Technics, technology", 176-178 [in Ukrainian].

Lipsey, R., Carlaw, K. I. & Bekhar, T. (2009). Economic Transformations: General Purpose Technologies and Long Term Economic Growth. Oxford University Press.

Natsіonalna transportna strategіya Ukraїni na perіod do 2030 roku (Proekt) [Ukraine National Transport Strategy for the period up to 2030 (project)]. mtu.gov.ua Retrieved from https://mtu.gov.ua/news/28581.html [in Ukrainian].

Shiryaєva, S. V., & Dankіvska, K. І. (2015). Osnovnі skladovі multimodalnoї transportnoї merezhі [The main components of a multimodal transport network]. Vіsnik Natsіonalnogo transportnogo unіversitetu. Serіya «Tekhnіchnі nauki» – Bulletin of the National Transport University. The Technical Science Series, 1, 568-573

Zagoryanskiy, V. G., Gaykova, T. V., Khorolskiy, V. L. & Kuzєv, І. O. (2018). Optimіzatsіyna model viboru tekhnіchnikh zasobіv konteynernikh perevezen ta їkh ratsіonalnogo poєdnannya [Optimization model of technical means for container transportation and their rational combination]. Vіsnik KrNU іm. Mikhayla Ostrogradskogo – Bulletin of KrNU of Michael Ostrogradsky, 3, 46-51 [in Ukrainian].

Pіdlіsniy, P. І, Patkevich, N. O. & Tsvetov, Yu. V. (2016). Rol konteynerizatsії zmіshanikh vantazhnikh perevezen u rozvitku svіtovoї torgіvlі [The role of containerization of mixed freight transportation in the development of world trade]. Yekonomіchniy forum – Economic Forum. 3, 67-81.

Vernigora, R. V., Okorokov, A. M., Tsuprov, P. S. & Pavlenko, O. І. (2017). Multimodalnі perevezennya yak bazoviy segment tranzitnogo potentsіalu Ukraїni [Multimodal transportation as a basic segment of transit potential of Ukraine]. Zb. nauk. prats DNUZT: Serіya Transportnі sistemi і tekhnologії perevezen – Coll. Scientific works of DNUZT: Series Transport systems and transportation technologies, 14, 20-29 [in Ukrainian].

Demenko V. Multimodalniy transport. Yekonomіchnі aspekti [Multimodal transport. Economic aspects] mtu.gov.ua. Retrieved from https://mtu.gov.ua/files/prezentacija_vladimira_demenko_20.08.18.pdf [in Ukrainian].

Cayt «Novosti» [Site of news]. uspa.gov.ua Retrieved from http://www.uspa.gov.ua/ru/press-tsentr/novosti/novosti-ampu/17839-zaoperativnimi-danimi-u-sichni-veresni-2020-roku-morski-porti-ukrajini-obrobili-118-78-mln-t-vantazhiv [in Ukrainian].

Evropeyska ugoda pro vazhlivі lіnії mіzhnarodnikh kombіnovanikh perevezen ta vіdpovіdnі ob'ekti (ULKP). (1991) [European Agreement on Important Lines of International Combined Transportation and Relevant Objects (UKP)]. 1991 January 02 [in Ukrainian].

Lukashevich, S. V. (2019). Bespilotnoe transportnoe sredstvo: smena paradigmy kak sledstvie tsifrovizatsii ekonomiki [Unmanned vehicle: the paradigm changing as a result of the digitalization of the economy]. Transportnoe pravo –Transport Law, 3, 3-5 [in Russian].

Wenk M., Klühspies J., Blow L., Kircher R., Fritz E., Witt M.,& Hekler M. (2018) Maglev: Science Experiment or the Future of Transport? Practical Investigation of Future Perspectives and Limitations of Maglev Technologies in Comparison with Steel-Wheel-Rail. Germany: The International Maglev Board.

Dzenzerskiy ,V.A., Omelyanenko, V.I., Vasilev, S.V., Matin, V.I. & Sergeev, S.A. (2001). Vysokoskorostnoy magnitniy transport s eletrodinamicheskoy levitatsiey [High-speed magnetic transport with electrodynamic levitation]. Kiїv: Naukova Dumka [in Russian].

Solomin, A. V. (2017) Kombinirovannaya sistema tyagi i bokovoy stabilizatsii dlya magnitnolevitatsionnogo transporta [Combined traction and lateral stabilization system for magnetic levitation transport]. Nauchnye i prakticheskie razrabotki – Scientific and practical developments, 1, 107-117 [in Russian].

Yasukochi K. (1983) Superconducting magnet development in Japan. IEEE Trans on Magnetics, 3, 303-314.

Bocharov, V. I., Salli, I. V. & Dzenzerskiy, V. A. (1988). Transport na sverkhprovodyashchikh magnitakh [Transport on superconducting magnets]. Rostov-na-Donu: Rostovskiy universitet [in Russian].

Lavrich, Yu. M., Plaksіn, S. V. & Pogorіla, L. M. (2019) Mіkrokhvilovі tekhnologії kontrolyu nadіynostі kolіynoї strukturi magnіtolevіtuyuchogo transportu [Microwave technologies for monitoring the strength of the magnetic transport track structure]. Zb. naukovikh prats DUTT. Ser. Transportnі sistemi ta tekhnologії – Coll. scientific works of DUTT. Ser. Transport systems and technologies, 33, 55-64.

Ikeda Kh., Sasaki T. & Yekoma Ye. (1986). Sistemy elektropitaniya [Power supply systems]. Totsyudo gijutsu – Totsyudo gidzyutsu, 8, 286- 291.

Maki, N., Takahashi, H., Fujimoto, T. (1981) A harmonic flux indication type onboard auxiliary power source system for levitated trains. IEEE Transaction on Power Apparatus and Systems, 6, 2898 – 2906.

Schach, R., Jehle, P. & Naimiann, R. (2006). Transrapid und Rad-Schiene-Hochgeschwindigkeitsbayn. Ein. Gesamptheitlicher Systemvergleich. Berlin-Heidelberg: Springer-Verlag.

Published

2022-12-29

How to Cite

Lavrich, Y., Plaksіn S., & Pogorіla L. (2022). CONCEPTUAL FUNDAMENTALS OF FREIGHT MAGNETOLEVITATION TRANSPORT SYSTEM CONSTRUCTION. Transport Systems and Technologies, (40), 78–93. https://doi.org/10.32703/2617-9040-2022-40-7

Issue

Section

Technics and techology